607 research outputs found

    Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    Full text link
    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.Comment: 8 pages, 3 figures, 1 tabl

    Light-Trap: A SiPM Upgrade for Very High Energy Astronomy and Beyond

    Full text link
    With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea. Id:81

    Disinhibition in Risky Sexual Behavior in Men, but Not Women, during Four Years of Antiretroviral Therapy in Rural, Southwestern Uganda

    Get PDF
    Background: In resource-rich areas, risky sexual behavior (RSB) largely diminishes after initiation of anti-retroviral therapy, with notable exceptions among some populations who perceive a protected benefit from anti-retroviral therapy (ART). Yet, there is limited data about long-term trends in risky sexual behavior among HIV-infected people in sub-Saharan Africa after initiation of anti-retroviral therapy. Methods: We administered questionnaires every three months to collect sexual behavior data among patients taking ART in southwestern Uganda over four years of follow-up time. We defined RSB as having unprotected sex with an HIV-negative or unknown status partner, or unprotected sex with a casual partner. We fit logistic regression models to estimate changes in RSB by time on ART, with and without adjustment for calendar year and CD4 count. Results: 506 participants were enrolled between 2005 and 2011 and contributed a median of 13 visits and 3.5 years of observation time. The majority were female (70%) and median age was 34 years (interquartile range 29–39). There was a decrease in the proportion of men reporting RSB from the pre-ART visit to the first post-ART visit (16.2 to 4.3%, p<0.01) but not women (14.1 to 13.3%, p = 0.80). With each year of ART, women reported decreasing RSB (OR 0.85 per year, 95%CI 0.74–0.98, p = 0.03). In contrast, men had increasing odds of reporting RSB with each year of ART to near pre-treatment rates (OR 1.41, 95%CI 1.14–1.74, p = 0.001), which was partially confounded by changes in calendar time and CD4 count (AOR = 1.24, 95%CI 0.92–1.67, p = 0.16). Conclusions: Men in southwestern Uganda reported increasing RSB over four years on ART, to levels approaching pre-treatment rates. Strategies to promote long-term safe sex practices targeted to HIV-infected men on ART might have a significant impact on preventing HIV transmission in this setting

    Empiric Deworming and CD4 Count Recovery in HIV-Infected Ugandans Initiating Antiretroviral Therapy

    Get PDF
    Background: There is conflicting evidence on the immunologic benefit of treating helminth co-infections (“deworming”) in HIV-infected individuals. Several studies have documented reduced viral load and increased CD4 count in antiretroviral therapy (ART) naïve individuals after deworming. However, there are a lack of data on the effect of deworming therapy on CD4 count recovery among HIV-infected persons taking ART. Methodology/Principal Findings To estimate the association between empiric deworming therapy and CD4 count after ART initiation, we performed a retrospective observational study among HIV-infected adults on ART at a publicly operated HIV clinic in southwestern Uganda. Subjects were assigned as having received deworming if prescribed an anti-helminthic agent between 7 and 90 days before a CD4 test. To estimate the association between deworming and CD4 count, we fit multivariable regression models and analyzed predictors of CD4 count, using a time-by-interaction term with receipt or non-receipt of deworming. From 1998 to 2009, 5,379 subjects on ART attended 21,933 clinic visits at which a CD4 count was measured. Subjects received deworming prior to 668 (3%) visits. Overall, deworming was not associated with a significant difference in CD4 count in either the first year on ART (β = 42.8; 95% CI, −2.1 to 87.7) or after the first year of ART (β = −9.9; 95% CI, −24.1 to 4.4). However, in a sub-analysis by gender, during the first year of ART deworming was associated with a significantly greater rise in CD4 count (β = 63.0; 95% CI, 6.0 to 120.1) in females. Conclusions/Significance: Empiric deworming of HIV-infected individuals on ART conferred no significant generalized benefit on subsequent CD4 count recovery. A significant association was observed exclusively in females and during the initial year on ART. Our findings are consistent with recent studies that failed to demonstrate an immunologic advantage to empirically deworming ART-naïve individuals, but suggest that certain sub-populations may benefit

    Optimizing Network Connectivity for Mobile Health Technologies in sub-Saharan Africa

    Get PDF
    Background: Mobile health (mHealth) technologies hold incredible promise to improve healthcare delivery in resource-limited settings. Network reliability across large catchment areas can be a major challenge. We performed an analysis of network failure frequency as part of a study of real-time adherence monitoring in rural Uganda. We hypothesized that the addition of short messaging service (SMS+GPRS) to the standard cellular network modality (GPRS) would reduce network disruptions and improve transmission of data. Methods: Participants were enrolled in a study of real-time adherence monitoring in southwest Uganda. In June 2011, we began using Wisepill devices that transmit data each time the pill bottle is opened. We defined network failures as medication interruptions of >48 hours duration that were transmitted when network connectivity was re-established. During the course of the study, we upgraded devices from GPRS to GPRS+SMS compatibility. We compared network failure rates between GPRS and GPRS+SMS periods and created geospatial maps to graphically demonstrate patterns of connectivity. Results: One hundred fifty-seven participants met inclusion criteria of seven days of SMS and seven days of SMS+GPRS observation time. Seventy-three percent were female, median age was 40 years (IQR 33–46), 39% reported >1-hour travel time to clinic and 17% had home electricity. One hundred one had GPS coordinates recorded and were included in the geospatial maps. The median number of network failures per person-month for the GPRS and GPRS+SMS modalities were 1.5 (IQR 1.0–2.2) and 0.3 (IQR 0–0.9) respectively, (mean difference 1.2, 95%CI 1.0–1.3, p-value<0.0001). Improvements in network connectivity were notable throughout the region. Study costs increased by approximately $1USD per person-month. Conclusions: Addition of SMS to standard GPRS cellular network connectivity can significantly reduce network connection failures for mobile health applications in remote areas. Projects depending on mobile health data in resource-limited settings should consider this upgrade to optimize mHealth applications

    Quasiparticle bandgap engineering of graphene and graphone on hexagonal boron nitride substrate

    Full text link
    Graphene holds great promise for post-silicon electronics, however, it faces two main challenges: opening up a bandgap and finding a suitable substrate material. In principle, graphene on hexagonal boron nitride (hBN) substrate provides potential system to overcome these challenges. Recent theoretical and experimental studies have provided conflicting results: while theoretical studies suggested a possibility of a finite bandgap of graphene on hBN, recent experimental studies find no bandgap. Using the first-principles density functional method and the many-body perturbation theory, we have studied graphene on hBN substrate. A Bernal stacked graphene on hBN has a bandgap on the order of 0.1 eV, which disappears when graphene is misaligned with respect to hBN. The latter is the likely scenario in realistic devices. In contrast, if graphene supported on hBN is hydrogenated, the resulting system (graphone) exhibits bandgaps larger than 2.5 eV. While the bandgap opening in graphene/hBN is due to symmetry breaking and is vulnerable to slight perturbation such as misalignment, the graphone bandgap is due to chemical functionalization and is robust in the presence of misalignment. The bandgap of graphone reduces by about 1 eV when it is supported on hBN due to the polarization effects at the graphone/hBN interface. The band offsets at graphone/hBN interface indicate that hBN can be used not only as a substrate but also as a dielectric in the field effect devices employing graphone as a channel material. Our study could open up new way of bandgap engineering in graphene based nanostructures.Comment: 8 pages, 4 figures; Nano Letters, Publication Date (Web): Oct. 25 2011, http://pubs.acs.org/doi/abs/10.1021/nl202725

    The Liquid Argon Jet Trigger of the H1 Experiment at HERA

    No full text
    We report on a novel trigger for the liquid argon calorimeter which was installed in the H1 Experiment at HERA.This trigger, called the “Jet Trigger”, was running at level 1 and implemented a real-time cluster algorithm. Within only 800 ns, the Jet Trigger algorithm found local energy maxima in the calorimeter, summed their immediate neighbors, sorted the resulting jets by energy, and applied topological conditions for the final level 1 trigger decision. The Jet Trigger was in operation from the year 2006 until the end of the HERA running in the summer of 2007. With the Jet Trigger it was possible to substantially reduce the thresholds for triggering on electronsand jets, giving access to a largely extended phase space for physical observables which could not have been reached in H1 before. The concepts of the Jet Trigger may be an interesting upgrade option for the LHC experiments
    corecore