13,734 research outputs found

    Vibrational States of Glassy and Crystalline Orthotherphenyl

    Full text link
    Low-frequency vibrations of glassy and crystalline orthoterphenyl are studied by means of neutron scattering. Phonon dispersions are measured along the main axes of a single crystal, and the corresponding longitudinal and transversal sound velocities are obtained. For glassy and polycrystalline samples, a density of vibrational states is determined and cross-checked against other dynamic observables. In the crystal, low-lying zone-boundary modes lead to an excess over the Debye density of states. In the glass, the boson peak is located at even lower frequencies. With increasing temperature, both glass and crystal show anharmonicity.Comment: 7 pages of LaTeX (svjour), 2 tables, 10 figures accepted in Eur. Phys. J.

    The probability distribution of a trapped Brownian particle in plane shear flows

    Full text link
    We investigate the statistical properties of an over-damped Brownian particle that is trapped by a harmonic potential and simultaneously exposed to a linear shear flow or to a plane Poiseuille flow. Its probability distribution is determined via the corresponding Smoluchowski equation, which is solved analytically for a linear shear flow. In the case of a plane Poiseuille flow, analytical approximations for the distribution are obtained by a perturbation analysis and they are substantiated by numerical results. There is a good agreement between the two approaches for a wide range of parameters.Comment: 5 pages, 4 figur

    Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry

    Full text link
    We investigate the response of two-dimensional pattern forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:21:2 and 1:11:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore depending on the modulation amplitude the transition between stripes and distorted hexagons is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review

    Critical, crossover, and correction-to-scaling exponents for isotropic Lifshitz points to order (8−d)2\boldsymbol{(8-d)^2}

    Full text link
    A two-loop renormalization group analysis of the critical behaviour at an isotropic Lifshitz point is presented. Using dimensional regularization and minimal subtraction of poles, we obtain the expansions of the critical exponents ν\nu and η\eta, the crossover exponent ϕ\phi, as well as the (related) wave-vector exponent βq\beta_q, and the correction-to-scaling exponent ω\omega to second order in ϵ8=8−d\epsilon_8=8-d. These are compared with the authors' recent ϵ\epsilon-expansion results [{\it Phys. Rev. B} {\bf 62} (2000) 12338; {\it Nucl. Phys. B} {\bf 612} (2001) 340] for the general case of an mm-axial Lifshitz point. It is shown that the expansions obtained here by a direct calculation for the isotropic (m=dm=d) Lifshitz point all follow from the latter upon setting m=8−ϵ8m=8-\epsilon_8. This is so despite recent claims to the contrary by de Albuquerque and Leite [{\it J. Phys. A} {\bf 35} (2002) 1807].Comment: 11 pages, Latex, uses iop stylefiles, some graphs are generated automatically via texdra

    High-speed bipolar phototransistors in a 180nm CMOS process

    Get PDF
    AbstractSeveral high-speed pnp phototransistors built in a standard 180nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40μm2 and 100×100μm2. Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p+ wafer with a p− epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850nm. Bandwidths up to 92MHz and dynamic responsivities up to 2.95A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc

    High-resolution imaging of ultracold fermions in microscopically tailored optical potentials

    Full text link
    We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a 2D acousto-optical deflector, we demonstrate the formation of several trapping geometries including a tightly focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice and a 8-site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation of down to one micrometer in combination with the low mass of 6Li results in tunneling rates which are sufficiently large for the implementation of Hubbard-models with the designed geometries.Comment: 15 pages, 6 figure

    Distribution of Trichinella spiralis Larvae in Tissues of Swine

    Get PDF
    Studies on the distribution of Trichinella spiralis in selected muscles of experimentally infected swine have indicated that the diaphragm generally contained the highest concentration of T. spiralis, followed by tongue, masseter, gluteal and intercostol muscles. Numerous tissues and organs devoid of striated muscle were also invaded by trichina larvae. Infected tissues were obtained from the circulatory, digestive, reproductive, nervous, endocrine, and excretory systems

    Lifshitz-point critical behaviour to O(ϵ2){\boldsymbol{O(\epsilon^2)}}

    Full text link
    We comment on a recent letter by L. C. de Albuquerque and M. M. Leite (J. Phys. A: Math. Gen. 34 (2001) L327-L332), in which results to second order in ϵ=4−d+m2\epsilon=4-d+\frac{m}{2} were presented for the critical exponents νL2\nu_{{\mathrm{L}}2}, ηL2\eta_{{\mathrm{L}}2} and γL2\gamma_{{\mathrm{L}}2} of d-dimensional systems at m-axial Lifshitz points. We point out that their results are at variance with ours. The discrepancy is due to their incorrect computation of momentum-space integrals. Their speculation that the field-theoretic renormalization group approach, if performed in position space, might give results different from when it is performed in momentum space is refuted.Comment: Latex file, uses the included iop stylefiles; Uses the texdraw package to generate included figure
    • …
    corecore