13,734 research outputs found
Vibrational States of Glassy and Crystalline Orthotherphenyl
Low-frequency vibrations of glassy and crystalline orthoterphenyl are studied
by means of neutron scattering. Phonon dispersions are measured along the main
axes of a single crystal, and the corresponding longitudinal and transversal
sound velocities are obtained. For glassy and polycrystalline samples, a
density of vibrational states is determined and cross-checked against other
dynamic observables. In the crystal, low-lying zone-boundary modes lead to an
excess over the Debye density of states. In the glass, the boson peak is
located at even lower frequencies. With increasing temperature, both glass and
crystal show anharmonicity.Comment: 7 pages of LaTeX (svjour), 2 tables, 10 figures accepted in Eur.
Phys. J.
The probability distribution of a trapped Brownian particle in plane shear flows
We investigate the statistical properties of an over-damped Brownian particle
that is trapped by a harmonic potential and simultaneously exposed to a linear
shear flow or to a plane Poiseuille flow. Its probability distribution is
determined via the corresponding Smoluchowski equation, which is solved
analytically for a linear shear flow. In the case of a plane Poiseuille flow,
analytical approximations for the distribution are obtained by a perturbation
analysis and they are substantiated by numerical results. There is a good
agreement between the two approaches for a wide range of parameters.Comment: 5 pages, 4 figur
Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry
We investigate the response of two-dimensional pattern forming systems with a
broken up-down symmetry, such as chemical reactions, to spatially resonant
forcing and propose related experiments. The nonlinear behavior immediately
above threshold is analyzed in terms of amplitude equations suggested for a
and ratio between the wavelength of the spatial periodic forcing
and the wavelength of the pattern of the respective system. Both sets of
coupled amplitude equations are derived by a perturbative method from the
Lengyel-Epstein model describing a chemical reaction showing Turing patterns,
which gives us the opportunity to relate the generic response scenarios to a
specific pattern forming system. The nonlinear competition between stripe
patterns and distorted hexagons is explored and their range of existence,
stability and coexistence is determined. Whereas without modulations hexagonal
patterns are always preferred near onset of pattern formation, single mode
solutions (stripes) are favored close to threshold for modulation amplitudes
beyond some critical value. Hence distorted hexagons only occur in a finite
range of the control parameter and their interval of existence shrinks to zero
with increasing values of the modulation amplitude. Furthermore depending on
the modulation amplitude the transition between stripes and distorted hexagons
is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review
Critical, crossover, and correction-to-scaling exponents for isotropic Lifshitz points to order
A two-loop renormalization group analysis of the critical behaviour at an
isotropic Lifshitz point is presented. Using dimensional regularization and
minimal subtraction of poles, we obtain the expansions of the critical
exponents and , the crossover exponent , as well as the
(related) wave-vector exponent , and the correction-to-scaling
exponent to second order in . These are compared with
the authors' recent -expansion results [{\it Phys. Rev. B} {\bf 62}
(2000) 12338; {\it Nucl. Phys. B} {\bf 612} (2001) 340] for the general case of
an -axial Lifshitz point. It is shown that the expansions obtained here by a
direct calculation for the isotropic () Lifshitz point all follow from the
latter upon setting . This is so despite recent claims to the
contrary by de Albuquerque and Leite [{\it J. Phys. A} {\bf 35} (2002) 1807].Comment: 11 pages, Latex, uses iop stylefiles, some graphs are generated
automatically via texdra
High-speed bipolar phototransistors in a 180nm CMOS process
AbstractSeveral high-speed pnp phototransistors built in a standard 180nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40μm2 and 100×100μm2. Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p+ wafer with a p− epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850nm. Bandwidths up to 92MHz and dynamic responsivities up to 2.95A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc
High-resolution imaging of ultracold fermions in microscopically tailored optical potentials
We report on the local probing and preparation of an ultracold Fermi gas on
the length scale of one micrometer, i.e. of the order of the Fermi wavelength.
The essential tool of our experimental setup is a pair of identical,
high-resolution microscope objectives. One of the microscope objectives allows
local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution
of 660 nm, while the other enables the generation of arbitrary optical dipole
potentials on the same length scale. Employing a 2D acousto-optical deflector,
we demonstrate the formation of several trapping geometries including a tightly
focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice
and a 8-site ring lattice configuration. Furthermore, we show the ability to
load and detect a small number of atoms in these trapping potentials. A site
separation of down to one micrometer in combination with the low mass of 6Li
results in tunneling rates which are sufficiently large for the implementation
of Hubbard-models with the designed geometries.Comment: 15 pages, 6 figure
Distribution of Trichinella spiralis Larvae in Tissues of Swine
Studies on the distribution of Trichinella spiralis in selected muscles of experimentally infected swine have indicated that the diaphragm generally contained the highest concentration of T. spiralis, followed by tongue, masseter, gluteal and intercostol muscles. Numerous tissues and organs devoid of striated muscle were also invaded by trichina larvae. Infected tissues were obtained from the circulatory, digestive, reproductive, nervous, endocrine, and excretory systems
Lifshitz-point critical behaviour to
We comment on a recent letter by L. C. de Albuquerque and M. M.
Leite (J. Phys. A: Math. Gen. 34 (2001) L327-L332), in which results to
second order in were presented for the critical
exponents , and
of d-dimensional systems at m-axial Lifshitz points.
We point out that their results are at variance with ours. The discrepancy is
due to their incorrect computation of momentum-space integrals. Their
speculation that the field-theoretic renormalization group approach, if
performed in position space, might give results different from when it is
performed in momentum space is refuted.Comment: Latex file, uses the included iop stylefiles; Uses the texdraw
package to generate included figure
- …