3,749 research outputs found
Optical carrier wave shocking: detection and dispersion
Carrier wave shocking is studied using the Pseudo-Spectral Spatial Domain
(PSSD) technique. We describe the shock detection diagnostics necessary for
this numerical study, and verify them against theoretical shocking predictions
for the dispersionless case. These predictions show Carrier Envelope Phase
(CEP) and pulse bandwidth sensitivity in the single-cycle regime. The flexible
dispersion management offered by PSSD enables us to independently control the
linear and nonlinear dispersion. Customized dispersion profiles allow us to
analyze the development of both carrier self-steepening and shocks. The results
exhibit a marked asymmetry between normal and anomalous dispersion, both in the
limits of the shocking regime and in the (near) shocked pulse waveforms.
Combining these insights, we offer some suggestions on how carrier shocking (or
at least extreme self-steepening) might be realised experimentally.Comment: 9 page
Don\u27t Be Angry with Me Darling / music by H. P. Danks; words by W. L. Gardner
https://egrove.olemiss.edu/sharris_a/1010/thumbnail.jp
Vegetable novelties, Bulletin, no. 125
The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire
Arsenical residues after spraying, Bulletin, no. 183
The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire
Efficiency studies in dairy farming, Bulletin, no. 275
The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire
Interesting magnetic properties of FeCoSi alloys
Solid solution between nonmagnetic narrow gap semiconductor FeSi and
diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with
long-range helical magnetic ordering, for a wide range of intermediate
concentration. We report various interesting magnetic properties of these
alloys, including low temperature re-entrant spin-glass like behaviour and a
novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya
interaction in the magnetic response of these non-centrosymmetric alloys is
discussed.Comment: 11 pages and 3 figure
The composition of maple sap, Bulletin, no. 25
The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire
EPS09 - a New Generation of NLO and LO Nuclear Parton Distribution Functions
We present a next-to-leading order (NLO) global DGLAP analysis of nuclear
parton distribution functions (nPDFs) and their uncertainties. Carrying out an
NLO nPDF analysis for the first time with three different types of experimental
input -- deep inelastic +A scattering, Drell-Yan dilepton production in
p+ collisions, and inclusive pion production in d+Au and p+p collisions at
RHIC -- we find that these data can well be described in a conventional
collinear factorization framework. Although the pion production has not been
traditionally included in the global analyses, we find that the shape of the
nuclear modification factor of the pion -spectrum at
midrapidity retains sensitivity to the gluon distributions, providing evidence
for shadowing and EMC-effect in the nuclear gluons. We use the Hessian method
to quantify the nPDF uncertainties which originate from the uncertainties in
the data. In this method the sensitivity of to the variations of the
fitting parameters is mapped out to orthogonal error sets which provide a
user-friendly way to calculate how the nPDF uncertainties propagate to any
factorizable nuclear cross-section. The obtained NLO and LO nPDFs and the
corresponding error sets are collected in our new release called {\ttfamily
EPS09}. These results should find applications in precision analyses of the
signatures and properties of QCD matter at the LHC and RHIC.Comment: 34 pages, 16 figures. The version accepted for publicatio
Gravitational Waves from the Dynamical Bar Instability in a Rapidly Rotating Star
A rapidly rotating, axisymmetric star can be dynamically unstable to an m=2
"bar" mode that transforms the star from a disk shape to an elongated bar. The
fate of such a bar-shaped star is uncertain. Some previous numerical studies
indicate that the bar is short lived, lasting for only a few bar-rotation
periods, while other studies suggest that the bar is relatively long lived.
This paper contains the results of a numerical simulation of a rapidly rotating
gamma=5/3 fluid star. The simulation shows that the bar shape is long lived:
once the bar is established, the star retains this shape for more than 10
bar-rotation periods, through the end of the simulation. The results are
consistent with the conjecture that a star will retain its bar shape
indefinitely on a dynamical time scale, as long as its rotation rate exceeds
the threshold for secular bar instability. The results are described in terms
of a low density neutron star, but can be scaled to represent, for example, a
burned-out stellar core that is prevented from complete collapse by centrifugal
forces. Estimates for the gravitational-wave signal indicate that a dynamically
unstable neutron star in our galaxy can be detected easily by the first
generation of ground based gravitational-wave detectors. The signal for an
unstable neutron star in the Virgo cluster might be seen by the planned
advanced detectors. The Newtonian/quadrupole approximation is used throughout
this work.Comment: Expanded version to be published in Phys. Rev. D: 13 pages, REVTeX,
13 figures, 9 TeX input file
- …