687 research outputs found
Exterior optical cloaking and illusions by using active sources: a boundary element perspective
Recently, it was demonstrated that active sources can be used to cloak any
objects that lie outside the cloaking devices [Phys. Rev. Lett. \textbf{103},
073901 (2009)]. Here, we propose that active sources can create illusion
effects, so that an object outside the cloaking device can be made to look like
another object. invisibility is a special case in which the concealed object is
transformed to a volume of air. From a boundary element perspective, we show
that active sources can create a nearly "silent" domain which can conceal any
objects inside and at the same time make the whole system look like an illusion
of our choice outside a virtual boundary. The boundary element method gives the
fields and field gradients (which can be related to monopoles and dipoles) on
continuous curves which define the boundary of the active devices. Both the
cloaking and illusion effects are confirmed by numerical simulations
A rigorous analysis of high order electromagnetic invisibility cloaks
There is currently a great deal of interest in the invisibility cloaks
recently proposed by Pendry et al. that are based in the transformation
approach. They obtained their results using first order transformations. In
recent papers Hendi et al. and Cai et al. considered invisibility cloaks with
high order transformations. In this paper we study high order electromagnetic
invisibility cloaks in transformation media obtained by high order
transformations from general anisotropic media. We consider the case where
there is a finite number of spherical cloaks located in different points in
space. We prove that for any incident plane wave, at any frequency, the
scattered wave is identically zero. We also consider the scattering of finite
energy wave packets. We prove that the scattering matrix is the identity, i.e.,
that for any incoming wave packet the outgoing wave packet is the same as the
incoming one. This proves that the invisibility cloaks can not be detected in
any scattering experiment with electromagnetic waves in high order
transformation media, and in particular in the first order transformation media
of Pendry et al. We also prove that the high order invisibility cloaks, as well
as the first order ones, cloak passive and active devices. The cloaked objects
completely decouple from the exterior. Actually, the cloaking outside is
independent of what is inside the cloaked objects. The electromagnetic waves
inside the cloaked objects can not leave the concealed regions and viceversa,
the electromagnetic waves outside the cloaked objects can not go inside the
concealed regions. As we prove our results for media that are obtained by
transformation from general anisotropic materials, we prove that it is possible
to cloak objects inside general crystals.Comment: The final version is now published in Journal of Physics A:
Mathematical and Theoretical, vol 41 (2008) 065207 (21 pp). Included in
IOP-Selec
Transformation elastodynamics and active exterior acoustic cloaking
This chapter consists of three parts. In the first part we recall the
elastodynamic equations under coordinate transformations. The idea is to use
coordinate transformations to manipulate waves propagating in an elastic
material. Then we study the effect of transformations on a mass-spring network
model. The transformed networks can be realized with "torque springs", which
are introduced here and are springs with a force proportional to the
displacement in a direction other than the direction of the spring terminals.
Possible homogenizations of the transformed networks are presented, with
potential applications to cloaking. In the second and third parts we present
cloaking methods that are based on cancelling an incident field using active
devices which are exterior to the cloaked region and that do not generate
significant fields far away from the devices. In the second part, the exterior
cloaking problem for the Laplace equation is reformulated as the problem of
polynomial approximation of analytic functions. An explicit solution is given
that allows to cloak larger objects at a fixed distance from the cloaking
device, compared to previous explicit solutions. In the third part we consider
the active exterior cloaking problem for the Helmholtz equation in 3D. Our
method uses the Green's formula and an addition theorem for spherical outgoing
waves to design devices that mimic the effect of the single and double layer
potentials in Green's formula.Comment: Submitted as a chapter for the volume "Acoustic metamaterials:
Negative refraction, imaging, lensing and cloaking", Craster and Guenneau
ed., Springe
General Relativity in Electrical Engineering
In electrical engineering metamaterials have been developed that offer
unprecedented control over electromagnetic fields. Here we show that general
relativity lends the theoretical tools for designing devices made of such
versatile materials. Given a desired device function, the theory describes the
electromagnetic properties that turn this function into fact. We consider media
that facilitate space-time transformations and include negative refraction. Our
theory unifies the concepts operating behind the scenes of perfect invisibility
devices, perfect lenses, the optical Aharonov-Bohm effect and electromagnetic
analogs of the event horizon, and may lead to further applications
Breast vibro-acoustography: initial results show promise
INTRODUCTION: Vibro-acoustography (VA) is a recently developed imaging modality that is sensitive to the dynamic characteristics of tissue. It detects low-frequency harmonic vibrations in tissue that are induced by the radiation force of ultrasound. Here, we have investigated applications of VA for in vivo breast imaging. METHODS: A recently developed combined mammography-VA system for in vivo breast imaging was tested on female volunteers, aged 25 years or older, with suspected breast lesions on their clinical examination. After mammography, a set of VA scans was acquired by the experimental device. In a masked assessment, VA images were evaluated independently by 3 reviewers who identified mass lesions and calcifications. The diagnostic accuracy of this imaging method was determined by comparing the reviewers' responses with clinical data. RESULTS: We collected images from 57 participants: 7 were used for training and 48 for evaluation of diagnostic accuracy (images from 2 participants were excluded because of unexpected imaging artifacts). In total, 16 malignant and 32 benign lesions were examined. Specificity for diagnostic accuracy was 94% or higher for all 3 reviewers, but sensitivity varied (69% to 100%). All reviewers were able to detect 97% of masses, but sensitivity for detection of calcification was lower (≤ 72% for all reviewers). CONCLUSIONS: VA can be used to detect various breast abnormalities, including calcifications and benign and malignant masses, with relatively high specificity. VA technology may lead to a new clinical tool for breast imaging applications
The Boundary Conditions for Point Transformed Electromagnetic Invisibility Cloaks
In this paper we study point transformed electromagnetic invisibility cloaks
in transformation media that are obtained by transformation from general
anisotropic media. We assume that there are several cloaks located in different
points in space. Our results apply in particular to the first order
invisibility cloaks introduced by Pendry et al. and to the high order
invisibility cloaks introduced by Hendi et al. and by Cai et al.. We identify
the appropriate {\it cloaking boundary conditions} that the solutions of
Maxwell equations have to satisfy at the outside, , and at the
inside, , of the boundary of the cloaked object . Namely, that
the tangential components of the electric and the magnetic fields have to
vanish at -what is always true- and that the normal components
of the curl of the electric and the magnetic fields have to vanish at . These results are proven requiring that energy be conserved. In the case
of one spherical cloak with a spherically stratified and a radial current
at we verify by an explicit calculation that our {\it cloaking
boundary conditions} are satisfied and that cloaking of active devices holds
even if the current is at the boundary of the cloaked object. As we prove our
results for media that are obtained by transformation from general anisotropic
media, our results apply to the cloaking of objects with active and passive
devices contained in general anisotropic media, in particular to objects with
active and passive devices contained inside general crystals.Comment: This final, published, version has been edited, comments have been
adde
Macroscopic invisibility cloaking of visible light
Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices
Recommended from our members
Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements.
Pooled CRISPR-Cas9 screens are a powerful method for functionally characterizing regulatory elements in the non-coding genome, but off-target effects in these experiments have not been systematically evaluated. Here, we investigate Cas9, dCas9, and CRISPRi/a off-target activity in screens for essential regulatory elements. The sgRNAs with the largest effects in genome-scale screens for essential CTCF loop anchors in K562 cells were not single guide RNAs (sgRNAs) that disrupted gene expression near the on-target CTCF anchor. Rather, these sgRNAs had high off-target activity that, while only weakly correlated with absolute off-target site number, could be predicted by the recently developed GuideScan specificity score. Screens conducted in parallel with CRISPRi/a, which do not induce double-stranded DNA breaks, revealed that a distinct set of off-targets also cause strong confounding fitness effects with these epigenome-editing tools. Promisingly, filtering of CRISPRi libraries using GuideScan specificity scores removed these confounded sgRNAs and enabled identification of essential regulatory elements
Amenability of groups and -sets
This text surveys classical and recent results in the field of amenability of
groups, from a combinatorial standpoint. It has served as the support of
courses at the University of G\"ottingen and the \'Ecole Normale Sup\'erieure.
The goals of the text are (1) to be as self-contained as possible, so as to
serve as a good introduction for newcomers to the field; (2) to stress the use
of combinatorial tools, in collaboration with functional analysis, probability
etc., with discrete groups in focus; (3) to consider from the beginning the
more general notion of amenable actions; (4) to describe recent classes of
examples, and in particular groups acting on Cantor sets and topological full
groups
- …