4,520 research outputs found

    Precise location of Sagittarius X ray sources with a rocket-borne rotating modulation collimator

    Get PDF
    Precise location of Sagittarius X ray sources with rocket-borne rotating modulation collimato

    Creation of macroscopic superposition states from arrays of Bose-Einstein condensates

    Get PDF
    We consider how macroscopic quantum superpositions may be created from arrays of Bose-Einstein condensates. We study a system of three condensates in Fock states, all with the same number of atoms and show that this has the form of a highly entangled superposition of different quasi-momenta. We then show how, by partially releasing these condensates and detecting an interference pattern where they overlap, it is possible to create a macroscopic superposition of different relative phases for the remaining portions of the condensates. We discuss methods for confirming these superpositions.Comment: 7 pages, 5 figure

    Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    Get PDF
    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV

    Characteristics of central collision events in Fe-nucleus interactions for 20 - 60 GeV/nucleon

    Get PDF
    A counter emulsion hybrid chamber in Japanese-American Cooperative Emulsion Experiment (JACEE-3) was flown on a balloon at the altitude (5.4 g/sq cm) in 1982 with the objective of probing the heavy nuclear collisions above 20 GeV per nucleon. In the energy region, it is suggested that nucleus-nucleus collisions provide dense collisions complex through compression and secondary particle production. In the lower energy region, an evidence of collective flow has been reported. And also, at higher energy region, it has been argued that nucleus has rather large stopping power. In this paper, the high multiplicity characteristics of Fe nucleus central collisions with energies 20 to 50 GeV/nucleon are presented. This is considered to be relevant to compressibility and collective flow of nuclear matter

    Primary cosmic ray spectra in the range 20-60 GeV/n

    Get PDF
    Energy spectra for primary cosmic rays C-Fe above 20 GeV/n were measured on a balloon flight from Greenville S.C. in June 1982 with a hybrid electronic counter-emulsion chamber experiment. Fluxes above the atmosphere appear in general agreement with previously published values. The heavy events included in this data will be used along with the JACEE passive chamber data to provide a heavy composition direct measurement from 10 to the 12th power to approximately 10 to the 15th power eV total energy

    The response of a scintillation counter below an emulsion chamber to heavy nucleus interactions in the chamber

    Get PDF
    In 1982 a hybrid electronic counter-emulsion chamber experiment was flown on a balloon to study heavy nucleus interactions in the 20 to approximately 100 GeV/AMU energy range. A gas Cerenkov counter, two solid Cerenkov counters, and a proportional counter hodoscope gave the primary energy, the primary charge and the trajectory of the particles, respectively. Using the trajectory information cosmic ray nuclei of Z 10 were found reliably and efficiently, and interaction characteristics of the Fe group nuclei were measured in the chamber. A plastic scintillator below the emulsion chamber responded to showers resulting from interactions in the chamber and to noninteracting nuclei. Data on the response of the counter have been compared with simulations of hadronic-electromagnetic cascades to derive the average neutral energy fraction released by the heavy interactions, and to predict the performance of this kind of counter at higher energies. For the interacting events of highest produced particles multiplicity comparison between various simulations and the shower counter signal have been made

    Just how long can you live in a black hole and what can be done about it?

    Get PDF
    We study the problem of how long a journey within a black hole can last. Based on our observations, we make two conjectures. First, for observers that have entered a black hole from an asymptotic region, we conjecture that the length of their journey within is bounded by a multiple of the future asymptotic ``size'' of the black hole, provided the spacetime is globally hyperbolic and satisfies the dominant-energy and non-negative-pressures conditions. Second, for spacetimes with R3{\Bbb R}^3 Cauchy surfaces (or an appropriate generalization thereof) and satisfying the dominant energy and non-negative-pressures conditions, we conjecture that the length of a journey anywhere within a black hole is again bounded, although here the bound requires a knowledge of the initial data for the gravitational field on a Cauchy surface. We prove these conjectures in the spherically symmetric case. We also prove that there is an upper bound on the lifetimes of observers lying ``deep within'' a black hole, provided the spacetime satisfies the timelike-convergence condition and possesses a maximal Cauchy surface. Further, we investigate whether one can increase the lifetime of an observer that has entered a black hole, e.g., by throwing additional matter into the hole. Lastly, in an appendix, we prove that the surface area AA of the event horizon of a black hole in a spherically symmetric spacetime with ADM mass MADMM_{\text{ADM}} is always bounded by A16πMADM2A \le 16\pi M_{\text{ADM}}^2, provided that future null infinity is complete and the spacetime is globally hyperbolic and satisfies the dominant-energy condition.Comment: 20 pages, REVTeX 3.0, 6 figures included, self-unpackin

    A facile analytical method for reliable selectivity examination in cofactor NADH regeneration

    Get PDF
    This work was supported by The Royal Society (ICA\R1\180317 and IES\R3\170162).Peer reviewedPublisher PD

    Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    Get PDF
    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations

    Photosynthesis in Corn

    Get PDF
    Studies on the photosynthetic efficiency of corn conducted in the Department of Botany at Ames have several indications
    corecore