776 research outputs found

    Features in the Primordial Spectrum from WMAP: A Wavelet Analysis

    Full text link
    Precise measurements of the anisotropies in the cosmic microwave background enable us to do an accurate study on the form of the primordial power spectrum for a given set of cosmological parameters. In a previous paper (Shafieloo and Souradeep 2004), we implemented an improved (error sensitive) Richardson-Lucy deconvolution algorithm on the measured angular power spectrum from the first year of WMAP data to determine the primordial power spectrum assuming a concordance cosmological model. This recovered spectrum has a likelihood far better than a scale invariant, or, `best fit' scale free spectra (\Delta ln L = 25 w.r.t. Harrison Zeldovich, and, \Delta ln L = 11 w.r.t. power law with n_s=0.95). In this paper we use Discrete Wavelet Transform (DWT) to decompose the local features of the recovered spectrum individually to study their effect and significance on the recovered angular power spectrum and hence the likelihood. We show that besides the infra-red cut off at the horizon scale, the associated features of the primordial power spectrum around the horizon have a significant effect on improving the likelihood. The strong features are localised at the horizon scale.Comment: 8 pages, 4 figures, uses Revtex4, matches version accepted to Phys. Rev. D, main results and conclusions unchanged, references adde

    Clustering of the Diffuse Infrared Light from the COBE DIRBE maps. III. Power spectrum analysis and excess isotropic component of fluctuations

    Full text link
    The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 mic we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (b>20deg|b| > 20\deg) and away from the center (90deg<l<270deg90\deg< l <270\deg) we extrapolate the amplitude of the fluctuations to cosecb=0|b|=0. We find a positive intercept of δFrms=15.57.0+3.7,5.93.7+1.6,2.40.9+0.5,2.00.5+0.25\delta F_{\rm rms} = 15.5^{+3.7}_{-7.0},5.9^{+1.6}_{-3.7}, 2.4^{+0.5}_{-0.9}, 2.0^{+0.25}_{-0.5} nW/m2/sr at 1.25, 2.2,3.5 and 4.9 mic respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.62.4+1.27.6^{+1.2}_{-2.4} nW/m2/sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. For 2\deg< \theta < 15^\deg, a power-spectrum analysis yields firm upper limits of (\theta/5^\deg) \times\delta F_{\rm rms} (\theta) < 6, 2.5, 0.8, 0.5 nW/m2/sr at 1.25, 2.2, 3.5 and 4.9 mic respectively. From 10-100 mic, the upper limits <1 nW/m2/sr.Comment: Ap.J., in press. 69 pages including 24 fig

    Measuring Feedback Using the Intergalactic Medium State and Evolution Inferred from the Soft X-ray Background

    Full text link
    We explore the intergalactic medium (IGM) as a potential source of the unresolved soft X-ray background (XRB) and the feasibility to extract the IGM state and evolution from XRB observations. We build two analytical models, the continuum field model and the halo model, to calculate the IGM XRB mean flux, angular auto correlation and cross correlation with galaxies. Our results suggest that the IGM may contribute a significant fraction to the unresolved soft XRB flux and correlations. We calibrated non-Gaussian errors estimated against our 5123512^3 moving mesh hydro simulation and estimate that the ROSAT all sky survey plus Sloan galaxy photometric redshift survey would allow a 10\sim 10% accuracy in the IGM XRB-galaxy cross correlation power spectrum measurement for 800<l<5000800<l<5000 and a 20\sim 20% accuracy in the redshift resolved X-ray emissivity-galaxy cross correlation power spectrum measurement for z0.5z\lesssim 0.5. At small scales, non-gravitational heating, e.g. feedback, dominates over gravity and leaves unique signatures in the IGM XRB, which allows a comparable accuracy in the measurement of the amount of non-gravitational heating and the length scales where non-gravitational energy balances gravity.Comment: 17 pages, 5 figures. Will appear on ApJ May issu

    A High Merger Fraction in the Rich Cluster MS1054-03 at z=0.83: Direct Evidence for Hierarchical Formation of Massive Galaxies

    Get PDF
    We present a morphological study of the galaxy population of the luminous X-ray cluster MS1054-03 at z=0.83. The sample consists of 81 spectroscopically confirmed cluster members in a 3 x 2 Mpc area imaged in F606W and F814W with WFPC2. We find thirteen ongoing mergers in MS1054-03, comprising 17% of the L > L* cluster population. Most of these mergers will likely evolve into luminous (\sim 2 L*) elliptical galaxies, and some may evolve into S0 galaxies. Assuming the galaxy population in MS1054-03 is typical for its redshift it is estimated that \sim 50% of present-day cluster ellipticals experienced a major merger at z < 1. The mergers are preferentially found in the outskirts of the cluster, and probably occur in small infalling clumps. Morphologies, spectra, and colors of the mergers show that their progenitors were typically E/S0s or early-type spirals with mean stellar formation redshifts z* \gtrsim 1.7. The red colors of the merger remnants are consistent with the low scatter in the color-magnitude relation in rich clusters at lower redshift. The discovery of a high fraction of mergers in this young cluster is direct evidence against formation of ellipticals in a single ``monolithic'' collapse at high redshift, and in qualitative agreement with predictions of hierarchical models for structure formation.Comment: Added GIF version of Figure 1. At http://www.astro.rug.nl/~dokkum/preprints/merger_fig1.eps.gz the PS file is available. Accepted for publication in ApJ Letter

    Constraints On the Size Evolution of Brightest Cluster Galaxies

    Full text link
    We measure the luminosity profiles of 16 brightest cluster galaxies (BCGs) at 0.4<z<0.80.4 < z < 0.8 using high resolution F160W NICMOS and F814W WFPC2 HST imaging. The heterogeneous sample is drawn from a variety of surveys: seven from clusters in the Einstein Medium Sensitivity Survey, five from the Las Campanas Distant Cluster Survey and its northern hemisphere precursor, and the remaining four from traditional optical surveys. We find that the surface brightness profiles of all but three of these BCGs are well described by a standard de Vaucouleurs (r1/4r^{1/4}) profile out to at least 2re\sim2r_{e} and that the biweight-estimated NICMOS effective radius of our high redshift BCGs (re=8.3±1.4r_{e} = 8.3\pm 1.4 kpc for H0=80H_{0} = 80 km s1^{-1} Mpc1^{-1}, Ωm=0.2,ΩΛ=0.0\Omega_{m} = 0.2, \Omega_\Lambda = 0.0) is 2\sim 2 times smaller than that measured for a local BCG sample. If high redshift BCGs are in dynamical equilibrium and satisfy the same scaling relations as low redshift ones, this change in size would correspond to a mass growth of a factor of 2 since z0.5z \sim 0.5. However, the biweight-estimated WFPC2 effective radius of our sample is 18 ±\pm 5.1 kpc, which is fully consistent with the local sample. While we can rule out mass accretion rates higher than a factor of 2 in our sample, the discrepancy between our NICMOS and WFPC2 results, which after various tests we describe appears to be physical, does not yet allow us to place strong constraints on accretion rates below that level.Comment: ApJ accepted (566, 1, February 2002), 12 pages, uses emulateapj5.st

    Can We Detect the Color–Density Relation with Photometric Redshifts?

    Get PDF
    A variety of methods have been proposed to define and to quantify galaxy environments. While these techniques work well in general with spectroscopic redshift samples, their application to photometric redshift surveys remains uncertain. To investigate whether galaxy environments can be robustly measured with photo-z samples, we quantify how the density measured with the nearest-neighbor approach is affected by photo-z uncertainties by using the Durham mock galaxy catalogs in which the 3D real-space environments and the properties of galaxies are known exactly. Furthermore, we present an optimization scheme in the choice of parameters used in the 2D projected measurements that yield the tightest correlation with respect to the 3D real-space environments. By adopting the optimized parameters in the density measurements, we show that the correlation between the 2D projected optimized density and the real-space density can still be revealed, and the color–density relation is also visible out to z ~ 0.8 even for a photo-z uncertainty (σΔz/(1+z){\sigma }_{{{\rm{\Delta }}}_{z}/(1+z)}) up to 0.06. We find that at redshifts 0.3 < z < 0.5 a deep (i ~ 25) photometric redshift survey with σΔz/(1+z)  =  0.02{\sigma }_{{{\rm{\Delta }}}_{z}/(1+z)}\;=\;0.02 yields a performance in small-scale density measurement that is comparable to a shallower i ~ 22.5 spectroscopic sample with ~10% sampling rate. Finally, we discuss the application of the local density measurements to the Pan-STARRS1 Medium Deep Survey (PS-MDS), one of the largest deep optical imaging surveys. Using data from ~5 square degrees of survey area, our results show that it is possible to measure local density and to probe the color–density relation with 3σ confidence level out to z ~ 0.8 in the PS-MDS. The color–density relation, however, quickly degrades for data covering smaller areas

    Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood

    Get PDF
    Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals

    The Luminosity Function Of Field Galaxies And Its Evolution Since z=1

    Get PDF
    We present the B-band luminosity function and comoving space and luminosity densities for a sample of 2779 I-band selected field galaxies based on multi-color data from the CADIS survey. The sample is complete down to I_815 = 22 without correction and with completeness correction extends to I_815=23.0. By means of a new multi-color analysis the objects are classified according to their spectral energy distributions (SEDs) and their redshifts are determined with typical errors of delta z <= 0.03. We have split our sample into four redshift bins between z=0.1 and z=1.04 and into three SED bins E-Sa,Sa-Sc and starbursting (emission line) galaxies. The evolution of the luminosity function is clearly differential with SED. The normalization phi* of luminosity function for the E-Sa galaxies decreases towards higher redshift, and we find evidence that the comoving galaxy space density decreases with redshift as well. In contrast, we find phi* and the comoving space density increasing with redshift for the Sa-Sc galaxies. For the starburst galaxies we find a steepening of the luminosity function at the faint end and their comoving space density increases with redshift.Comment: 15 pages, 14 figures, accepted by Astronomy&Astrophysic

    The Canada-UK Deep Submillimeter Survey VI: The 3-Hour Field

    Get PDF
    We present the complete submillimeter data for the Canada-UK Deep Submillimeter Survey (CUDSS) 3-hour field. The obeservations were taken with the Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope on Mauna Kea. The 3-hour field is one of two main fields in our survey and covers 60 square arcminutes to a 3-sigma depth of 3 mJy. In this field we have detected 27 sources above 3-sigma and 15 above 3.5-sigma. We assume the source counts follow the form N(S)SαN(S) {\propto} S^{-\alpha} and measure α\alpha = 3.31.0+1.4^{+1.4}_{-1.0}. This is in good agreement with previous studies and further supports our claim (Eales et al., 2000) that SCUBA sources brighter than 3 mJy produce ~20% of the 850μ\mum background energy. Using preliminary ISO 15 μ\mum maps and VLA 1.4 GHz data we have identified counterparts for six objects and have marginal detections at 450μ\mum for two additional sources. With this information we estimate a median redshift for the sample of 2.0±\pm0.5, with \sim10% lying at z<z< 1. We have measured the angular clustering of S850 > 3 mJy sources using the source catalogues from the CUDSS two main fields, the 3-hour and 14-hour fields, and find a marginal detection of clustering, primarily from the 14-hour field, of ω(θ)=4.4±2.9θ0.8\omega(\theta)=4.4\pm2.9 \theta^{-0.8}. This is consistent with clustering at least as strong as that seen for the Lyman-break galaxy population and the Extremely Red Objects. Since SCUBA sources are selected over a broader range in redshifts than these two populations the strength of the true spatial clustering is expected to be correspondingly stronger.Comment: 17 pages, 8 figures, submitted to Ap
    corecore