947 research outputs found

    Valence bond spin liquid state in two-dimensional frustrated spin-1/2 Heisenberg antiferromagnets

    Full text link
    Fermionic valence bond approach in terms of SU(4) representation is proposed to describe the J1βˆ’J2J_{1}-J_{2} frustrated Heisenberg antiferromagnetic (AF) model on a {\it bipartite} square lattice. A uniform mean field solution without breaking the translational and rotational symmetries describes a valence bond spin liquid state, interpolating the two different AF ordered states in the large J1J_{1} and large J2J_{2} limits, respectively. This novel spin liquid state is gapless with the vanishing density of states at the Fermi nodal points. Moreover, a sharp resonance peak in the dynamic structure factor is predicted for momenta q=(0,0){\bf q}=(0,0) and (Ο€,Ο€)(\pi ,\pi) in the strongly frustrated limit J2/J1∼1/2J_{2}/J_{1}\sim 1/2, which can be checked by neutron scattering experiment.Comment: Revtex file, 4 pages, 4 figure

    Transverse force generated by an electric field and transverse charge imbalance in spin-orbit coupled systems

    Full text link
    We use linear response theory to study the transverse force generated by an external electric field and hence possible charge Hall effect in spin-orbit coupled systems. In addition to the Lorentz force that is parallel to the electric field, we find that the transverse force perpendicular to the applied electric field may not vanish in a system with an anisotropic energy dispersion. Surprisingly, in contrast to the previous results, the transverse force generated by the electric field does not depend on the spin current, but in general, it is related to the second derivative of energy dispersion only. Furthermore, we find that the transverse force does not vanish in the Rashba-Dresselhaus system. Therefore, the non-vanishing transverse force acts as a driving force and results in charge imbalance at the edges of the sample. The estimated ratio of the Hall voltage to the longitudinal voltage is ∼10βˆ’3\sim 10^{-3}. The disorder effect is also considered in the study of the Rashba-Dresselhaus system. We find that the transverse force vanishes in the presence of impurities in this system because the vertex correction and the anomalous velocity of the electron accidently cancel each other

    Concatenating dynamical decoupling with decoherence-free subspaces for quantum computation

    Full text link
    A scheme to implement a quantum computer subjected to decoherence and governed by an untunable qubit-qubit interaction is presented. By concatenating dynamical decoupling through bang-bang (BB) pulse with decoherence-free subspaces (DFSs) encoding, we protect the quantum computer from environment-induced decoherence that results in quantum information dissipating into the environment. For the inherent qubit-qubit interaction that is untunable in the quantum system, BB control plus DFSs encoding will eliminate its undesired effect which spoils quantum information in qubits. We show how this quantum system can be used to implement universal quantum computation.Comment: 6 pages,2 figures, 1 tabl

    Dynamical signature of fractionalization at a deconfined quantum critical point

    Get PDF
    Deconfined quantum critical points govern continuous quantum phase transitions at which fractionalized (deconfined) degrees of freedom emerge. Here we study dynamical signatures of the fractionalized excitations in a quantum magnet (the easy-plane J-Q model) that realize a deconfined quantum critical point with emergent O(4) symmetry. By means of large-scale quantum Monte Carlo simulations and stochastic analytic continuation of imaginary-time correlation functions, we obtain the dynamic spin-structure factors in the S x and S z channels. In both channels, we observe broad continua that originate from the deconfined excitations. We further identify several distinct spectral features of the deconfined quantum critical point, including the lower edge of the continuum and its form factor on moving through the Brillouin zone. We provide field-theoretical and lattice model calculations that explain the overall shapes of the computed spectra, which highlight the importance of interactions and gauge fluctuations to explain the spectral-weight distribution. We make further comparisons with the conventional Landau O(2) transition in a different quantum magnet, at which no signatures of fractionalization are observed. The distinctive spectral signatures of the deconfined quantum critical point suggest the feasibility of its experimental detection in neutron scattering and nuclear magnetic resonance experiments.First author draf

    Calpain 1 Knockdown Improves Tissue Sparing and Functional Outcomes after Spinal Cord Injury in Rats

    Get PDF
    To evaluate the hypothesis that calpain 1 knockdown would reduce pathological damage and functional deficits after spinal cord injury (SCI), we developed lentiviral vectors encoding calpain 1 shRNA and eGFP as a reporter (LV-CAPN1 shRNA). The ability of LV-CAPN1 shRNA to knockdown calpain 1 was confirmed in rat NRK cells using Northern and Western blot analysis. To investigate the effects on spinal cord injury, LV-CAPN1shRNA or LV-mismatch control shRNA (LV-control shRNA) were administered by convection enhanced diffusion at spinal cord level T10 in Long-Evans female rats (200–250 g) 1 week before contusion SCI, 180 kdyn force, or sham surgery at the same thoracic level. Intraspinal administration of the lentiviral particles resulted in transgene expression, visualized by eGFP, in spinal tissue at 2 weeks after infection. Calpain 1 protein levels were reduced by 54% at T10 2 weeks after shRNA-mediated knockdown (p\u3c0.05, compared with the LV-control group, n=3 per group) while calpain 2 levels were unchanged. Intraspinal administration of LV-CAPN1shRNA 1 week before contusion SCI resulted in a significant improvement in locomotor function over 6 weeks postinjury, compared with LV-control administration (p\u3c0.05, n=10 per group). Histological analysis of spinal cord sections indicated that pre-injury intraspinal administration of LV-CAPN1shRNA significantly reduced spinal lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing (p\u3c0.05, n=10 per group). Together, results support the hypothesis that calpain 1 activation contributes to the tissue damage and impaired locomotor function after SCI, and that calpain1 represents a potential therapeutic target

    Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons

    Full text link
    We consider the decoherence of photons suffering in phase-damping channels. By exploring the evolutions of single-photon polarization states and two-photon polarization-entangled states, we find that different frequency spectrum envelopes of photons induce different decoherence processes. A white frequency spectrum can lead the decoherence to an ideal Markovian process. Some color frequency spectrums can induce asymptotical decoherence, while, some other color frequency spectrums can make coherence vanish periodically with variable revival amplitudes. These behaviors result from the non-Markovian effects on the decoherence process, which may give rise to a revival of coherence after complete decoherence.Comment: 7 pages, 4 figures, new results added, replaced by accepted versio

    Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions

    Full text link
    We study the transport properties of a graphene ferromagnet-insulator superconductor (FIS) junction within the Blonder-Tinkham-Klapwijk formalism by solving spin-polarized Dirac-Bogoliubov-de-Gennes equation. We find that the retro and specular Andreev reflections in the graphene FIS junction are drastically modified in the presence of exchange interaction and that the spin-polarization (PTP_T) of tunneling current can be tuned from the positive to negative value by bias voltage (VV). In the thin-barrier limit, the conductance GG of a graphene FIS junction oscillates as a function of barrier strength Ο‡\chi. Both the amplitude and phase of the conductance oscillation varies with the exchange energy EexE_{ex}. For Eex<EFE_{ex}<E_F (Fermi energy), the amplitude of oscillation decreases with EexE_{ex}. For Eexc>Eex>EFE_{ex}^{c}>E_{ex}>E_F, the amplitude of oscillation increases with EexE_{ex}, where Eexc=2EF+U0E_{ex}^{c}=2E_{F}+U_{0} (U0U_{0} is the applied electrostatic potential on the superconducting segment of the junction). For Eex>EexcE_{ex} > E_{ex}^{c}, the amplitude of oscillation decreases with EexE_{ex} again. Interestingly, a universal phase difference of Ο€/2\pi/2 in Ο‡\chi exists between the Gβˆ’Ο‡G-\chi curves for Eex>EFE_{ex}>E_F and Eex<EFE_{ex}<E_F. Finally, we find that the transitions between retro and specular Andreev reflections occur at eV=∣EFβˆ’Eex∣eV=|E_{F}-E_{ex}| and eV=Eex+EFeV=E_{ex}+E_{F}, and hence the singular behavior of the conductance near these bias voltages results from the difference in transport properties between specular and retro Andreev reflections.Comment: Accepted for publication in Physical Review
    • …
    corecore