
University of Kentucky
UKnowledge

Spinal Cord and Brain Injury Research Center
Faculty Publications Spinal Cord and Brain Injury Research

3-15-2013

Calpain 1 Knockdown Improves Tissue Sparing
and Functional Outcomes after Spinal Cord Injury
in Rats
Chen Guang Yu
University of Kentucky, chen-guang.yu@uky.edu

Yanzhang Li
University of Kentucky, yanzhang.li@uky.edu

Kashif Raza
University of Kentucky, kashif.raza1@uky.edu

Xin Xin Yu
University of Kentucky

Sarbani Ghoshal
University of Kentucky, sarbanighoshal@uky.edu

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.
Follow this and additional works at: https://uknowledge.uky.edu/scobirc_facpub

Part of the Neurology Commons

This Article is brought to you for free and open access by the Spinal Cord and Brain Injury Research at UKnowledge. It has been accepted for inclusion
in Spinal Cord and Brain Injury Research Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please
contact UKnowledge@lsv.uky.edu.

Repository Citation
Yu, Chen Guang; Li, Yanzhang; Raza, Kashif; Yu, Xin Xin; Ghoshal, Sarbani; and Geddes, James W., "Calpain 1 Knockdown Improves
Tissue Sparing and Functional Outcomes after Spinal Cord Injury in Rats" (2013). Spinal Cord and Brain Injury Research Center Faculty
Publications. 2.
https://uknowledge.uky.edu/scobirc_facpub/2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232562864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/scobirc_facpub?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/scobirc_facpub?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/scobirc?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/scobirc_facpub?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/692?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/scobirc_facpub/2?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Authors
Chen Guang Yu, Yanzhang Li, Kashif Raza, Xin Xin Yu, Sarbani Ghoshal, and James W. Geddes

Calpain 1 Knockdown Improves Tissue Sparing and Functional Outcomes after Spinal Cord Injury in Rats

Notes/Citation Information
Published in Journal of Neurotrauma, v. 30, no. 6, p. 427-433.

This is a copy of an article published in the Journal of Neurotrauma (c), 2013, copyright Mary Ann Liebert,
Inc.; Journal of Neurotrauma is available online at: http://online.liebertpub.com.

Digital Object Identifier (DOI)
http://dx.doi.org/10.1089/neu.2012.2561

This article is available at UKnowledge: https://uknowledge.uky.edu/scobirc_facpub/2

http://online.liebertpub.com
https://uknowledge.uky.edu/scobirc_facpub/2?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


Original Articles

Calpain 1 Knockdown Improves Tissue Sparing
and Functional Outcomes after Spinal Cord Injury in Rats

Chen Guang Yu, Yanzhang Li, Kashif Raza, Xin Xin Yu, Sarbani Ghoshal, and James W. Geddes

Abstract

To evaluate the hypothesis that calpain 1 knockdown would reduce pathological damage and functional deficits after

spinal cord injury (SCI), we developed lentiviral vectors encoding calpain 1 shRNA and eGFP as a reporter (LV-CAPN1

shRNA). The ability of LV-CAPN1 shRNA to knockdown calpain 1 was confirmed in rat NRK cells using Northern and

Western blot analysis. To investigate the effects on spinal cord injury, LV-CAPN1shRNA or LV-mismatch control

shRNA (LV-control shRNA) were administered by convection enhanced diffusion at spinal cord level T10 in Long-Evans

female rats (200–250 g) 1 week before contusion SCI, 180 kdyn force, or sham surgery at the same thoracic level.

Intraspinal administration of the lentiviral particles resulted in transgene expression, visualized by eGFP, in spinal tissue at

2 weeks after infection. Calpain 1 protein levels were reduced by 54% at T10 2 weeks after shRNA-mediated knockdown

(p < 0.05, compared with the LV-control group, n = 3 per group) while calpain 2 levels were unchanged. Intraspinal

administration of LV-CAPN1shRNA 1 week before contusion SCI resulted in a significant improvement in locomotor

function over 6 weeks postinjury, compared with LV-control administration (p < 0.05, n = 10 per group). Histological

analysis of spinal cord sections indicated that pre-injury intraspinal administration of LV-CAPN1shRNA significantly

reduced spinal lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing ( p < 0.05,

n = 10 per group). Together, results support the hypothesis that calpain 1 activation contributes to the tissue damage and

impaired locomotor function after SCI, and that calpain1 represents a potential therapeutic target.

Key words: behavior; gene therapy; lentiviral; locomotor; pathology; RNAi; tissue sparing

Introduction

The locomotor deficits resulting from traumatic spinal cord

injury (SCI) are the result of both the initial mechanical insult

as well as a cascade of secondary mechanisms that exacerbate the

tissue damage. Excessive calpain activation is one secondary

mechanism strongly implicated in the secondary neuronal and ax-

onal degeneration after SCI.1 Calpains are calcium activated neu-

tral proteases that cleave a wide range of cellular proteins including

cytoskeletal, membrane-bound, and soluble proteins.2 Loss of

function of these calpain substrates contributes to the death of

neurons and oligodendrocytes, axonal demyelination and degen-

eration, and locomotor deficits after SCI.3,4 In addition, calpains

serve essential physiological roles including signal transduction,

cell migration, membrane fusion, and cell differentiation.5–7 The

challenge is to prevent the excessive calpain activity that leads to

neurodegeneration, but retain the essential physiological roles of

calpains.

Of the 15 mammalian calpain isoforms identified to date, the

best characterized calpains in the central nervous system (CNS) are

the ubiquitous m- and l-calpains. These are heterodimers consisting

of a unique 80 kDa large subunit (calpain 1 and 2) and a common

28 kDa small subunit (calpain small subunit 1, also referred to as

calpain 4). The two calpain isoforms share many properties. Both are

cytosolic and appear to have similar substrate specificities, with the

major difference being that purified m-calpain requires mM Ca2+ for

activation while l-calpain requires lM Ca2 + .8 Knockout of calpain 2

is embryonically lethal, while calpain 1 null mice are viable with

minimal phenotype.9,10 In addition, CNS calpain 1 expression in-

creases post-natally while calpain 2 expression is relatively constant

during rat CNS development and maturation.11 Together, the above

results suggest that knocking down or inhibiting calpain 1 might limit

the damage caused by excessive calpain activity, and that by tar-

geting only a single calpain isoform that essential physiological roles

of calpains would be preserved.

In the present study, we examined the hypothesis that decreased

calpain 1 will attenuate secondary tissue damage and locomotor

deficits after contusive injury to the spinal cord. Calpain 1 levels

were reduced using lentiviral CAPN1 short hairpin ribonucleic acid

(shRNA) injected into the rat spinal cord. Because of the relatively
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rapid calpain activation that occurs after SCI compared with the

several days needed for knockdown of calpain protein levels using

RNA interference or antisense approaches,12,13 it was necessary to

administer the lentiviral CAPN1 siRNA 1 week pre-injury. Loco-

motor function, lesion volume, and tissue sparing were evaluated

post-injury. The longer range goal is to evaluate the potential of

CAPN1 inhibition as a druggable target.

Methods

Calpain 1 shRNA

Calpain 1 (CAPN1) small interfering RNA (siRNA) sequences
(Genebank accession number: NM_019152) were selected and
chemically modified based on accepted criteria for the rational
design of siRNA with off-target control using two web-based
programs (Dharmacon and Invitrogen).14 To minimize the potential
off-target effects of siRNA, the CAPN1 siRNA sequence 1 (Sense,
start 5¢-GCACAAUCAGAGCACUUUAUC-3¢), the CAPN1
siRNA sequence 2 (Sense, start 5¢-GGGACUUCAUACGUGAG
UUCA-3¢), and mismatch control siRNA (5¢-GCAGAAUCAC
AGCACUUUAUC-3¢) were subjected to BLAST analysis and
synthesized in the modification option with off-target control by
Thermo Scientific-Dharmacon Products (Lafayette, CO). To deter-
mine the efficacy of CAPN1 siRNA sequences, normal rat kidney
(NRK) cells (3 · 105/well in 6-well plates) were transfected with
100 nM calpain 1 siRNAs complexed with Lipofectamine 2000,
based on the manufacturer’s instructions (Invitrogen, Carlsbad, CA).
NRK cells were assigned to the following groups: (A) mismatch
control siRNA 1 transfection, (B) negative control siRNA transfec-
tion, (C) calpain 1 siRNA1 transfection, and (D) calpain 1 siRNA 2
transfection. Western blot analysis was used to evaluate the relative
levels of calpain 1 or calpain 2 protein at 48 h post-transfection
(n = 4/group).

NRK cells were purchased from American Type Culture Col-
lection (ATCC, Manassas, VA) and maintained in Dulbecco
modified eagle medium supplemented with 5% fetal bovine serum,
10% heat-inactivated donor horse serum, 50 lg/mL streptomycin,
and 50 IU/mL penicillin in a humidified atmosphere at 37�C and
5% CO2 as described in the protocol provided by ATCC.

Lentiviral vectors

Lentiviral vectors were chosen because they induce little or no
immune response within the host, they provide long-lasting trans-
gene expression, and they infect dividing and non-dividing cells
including neurons and glia.15,16

LentiLox 3.7 vector16 was purchased from ATCC (pLL3.7,
Manassas, VA). It contains a cytomegalovirus (CMV) promoter
driven enhanced green fluorescent protein (eGFP) reporter and a
U6 promoter with downstream of cloning sites (HpaI and XhoI) to
allow the introduction of oligonucleotides encoding CAPN1
shRNA or mismatch control shRNA to produce LV-CAPN1shRNA
or LV-control shRNA. The LV-CAPN1shRNA or LV-control
shRNA was cotransfected with packaging plasmid PAX2 and
envelope plasmid pMD2G (obtained from Dr. Didier Trono,
University of Geneva, Switzerland) into 293FT cells (Invitrogen)
using calcium-phosphate precipitate. Viral supernatants were
harvested and concentrated after 72 h. The titer of the lentiviral
stocks was assessed by using 10-fold serial dilutions to transducer
HT 1080 human fibrosarcoma cells (ATCC) using the eGFP re-
porter of the pLL3.7 vector to identify infected cells. The viral
titer was 5 · 107 to 1 · 108 TU/mL for LV-CAPN1shRNA and
LV-control shRNA.

Knockdown of calpain 1 mRNA and protein in the NRK cells
treatment was determined using Northern blot and Western blot
analysis, respectively. The NRK cells were grown to 80% con-

fluency, then infected with 105 TU/well in six-well plates. Five
days after lentiviral infection, the cells were harvested for Northern
or Western blotting. NRK cells were chosen because they express
relatively high levels of both calpain 1 and calpain 2.11 NRK cells
were assigned to the following groups: (A) Lentiviral CAPN1
shRNA and (B) Lentiviral control shRNA. Northern blotting and
Western blotting were used to evaluate the relative levels of calpain
1 mRNA and protein at 5 days post-lentiviral infection, respec-
tively (n = 3/group).

Animals and surgical procedures

Thirty-two female Long-Evans adult rats (Charles River, In-
dianapolis, IN) weighing 200–250 g were used for the in vivo ex-
perimental studies. All experimental procedures were approved and
performed in accordance with the Guidelines of the US National
Institutes of Health and Institutional Animal Care and Use Com-
mittee of the University of Kentucky.

Animals were kept under standard housing conditions for at least
1 week after arrival. Lentiviral particles containing LV-CAPN1-
shRNA and LV-control shRNA were administered by convection
enhanced delivery17,18 at spinal segment T10. Intraspinal injections
were made bilaterally at 0.5 mm lateral to the midline and 1 mm
ventral. For each injection site, a volume of 3.0 lL was slowly
administered over 30 min.

Contusive SCI was produced after a T10 laminectomy using an
Infinite Horizons (IH) spinal cord injury device (Precision Systems &
Instrumentation, Fairfax Station, VA) as described previously.19,20

Briefly, adult female Long-Evans rats, weighing 200–250 g, were
anesthetized with ketamine (80 mg/kg, intraperitoneal [ip]) and
xylazine (10 mg/kg, ip), and a laminectomy was made to expose
spinal segment T10. The exposed vertebral column was stabilized
by clamping the rostral T9 and caudal T11 vertebral bodies with
two spinal forceps. SCI was then applied with the IH device using a
180 kdyn force setting, which resulted in moderately severe con-
tusion injury. Impact analyses, including actual force applied to the
spinal cord, displacement of spinal cord, and velocity, were re-
corded. The impact tip was automatically retracted immediately,
the wound irrigated with saline, and the muscle and skin openings
were closed with sutures. The surgical procedure and postoperative
care were similar to that described previously.19

Northern blot analysis

Lentivirus-infected NRK cells were lysed with Trizol reagent
(Invitrogen) and prepared for total RNA isolation according to the
manufacturer’s instructions. 1.0 lg of total RNA was fractioned on
a 10% denaturing polyacrylamide gel and transferred to a nitro-
cellulose membrane. Blots were hybridized to a probe consisting of
a 5¢ digoxin-labeled 21-nt calpain 1 siRNA sense strand (DIG RNA
Labelling Kit, Roche Applied Science, Mannheim, Germany). A 5¢
digoxin-labeled actin probe was used to determine equal loading of
RNA. The hybridization and the detection of the hybridized probe
were performed according to DIG Application Manual (Roche
Applied Science, Mannheim, Germany).

Western blot analysis

NRK cells were washed with 1 · phosphate buffered saline
(PBS), lysed by adding buffer, and sonicated for 15 sec to shear
deoxyribonucleic acid and reduce sample viscosity. For spinal cord
samples, animals were euthanatized by pentobarbital (100 mg/kg,
ip injection) and decapitated 2 weeks post-injury. A 5-mm block of
spinal cord centered on T10 was removed and snap-frozen on dry
ice, then stored at - 80�C. The spinal cord samples were homog-
enized in a lyses buffer and sonicated. The protein samples were
obtained by microcentrifugation at 14,000 rpm for 10 min. Protein
quantities were determined using the bicinchoninic method.
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Western blotting was performed as described previously.21,22

Briefly, NRK cell protein samples or spinal cord protein samples
were loaded on SDS-PAGE gels and electrotransferred to nitro-
cellulose membranes. Blots from cell samples or spinal cord
samples were probed with a polyclonal anti-rabbit antibody against
calpain 1 (1:1000, Chemicon, Temecula, CA). Blots were then
incubated with infrared-labeled anti-rabbit secondary antibody
(1:5000). The blots were reprobed with a monoclonal anti-mouse
antibody against actin (1:1000, Chemicon, Temecula, CA) and then
incubated with infrared-labeled anti-mouse secondary antibody
(1:5000). All blots were visualized and analyzed on the LI-COR
Odyssey infrared imaging system (Lincoln, NE).

Immunofluorescence imaging

At 2 weeks post-injection with LV-CAPN1shRNA and LV-
control shRNA, rats were transcardially perfused with cold saline
followed by buffered 4% paraformaldehyde. The spinal cord was
removed, cut into blocks according to the segments, and postfixed
with the same fixative overnight. The fixed spinal cords were se-
rially and transversely cryosectioned at 20 lm. eGFP expression
was viewed using a fluorescence microscopy system (Olympus
DSU) (n = 3/group).

Assessment of locomotor function

Open-field locomotor function was assessed preinjury and 0, 3,
7, 14, 21, 28, 35, and 42 days post-injury using the Basso, Beattie,
Bresnahan (BBB) locomotor rating scale.19,23 The two examiners

participating in the BBB evaluation were blinded to the experi-
mental treatment received by each animal.

Assessment of tissue sparing

At 6 weeks post-injury, animals were euthanatized and trans-
cardially perfused with cold saline followed by buffered 4%
paraformaldehyde. The spinal cord was removed and prepared for
histological assessment as described previously.19,24 Spinal cords
were serially and transversely cryosectioned at a thickness of
20 lm. Every fifth section was mounted onto gelatin-coated slides
and stored at - 20�C. A modified eriochrome cyanine staining
protocol for myelin that differentiates both white matter and cell
bodies was used to visualize spared spinal tissue. Area measure-
ments in lesion, gray matter, white matter, and total spinal tissue
and calculation of lesion volume, total tissue sparing, white matter
sparing, and gray matter sparing in transverse sections of the in-
jured cords were performed as described previously.19,24

FIG. 1. Knockdown of calpain 1 with siRNA in vitro. Two
calpain 1 siRNA sequences were evaluated in transient transfec-
tion assays. Normal rat kidney cells (3x105/well in six-well plates)
were transfected with 100 nM calpain 1 siRNA sequence 1 or
sequence 2 using lipofectamine 2000 (Invitrogen). Relative pro-
tein levels of calpain 1 (80 kDa) were measured 48 h after trans-
fection using Western blot and compared with levels of actin.
Each siRNA sequence decreased calpain 1 levels by approxima-
tely 60%, ***p < 0.001, compared with mismatch control siRNA
and to negative control siRNA, repeated measures analysis of
variance, and Bonferroni post hoc test, n = 4 per group.

FIG. 2. Knockdown of calpain 1 with LV-CAPN1 shRNA in vitro.
Calpain 1 siRNA (sense sequence: 5¢GCACAATCAGAGCAC
TTTATC 3¢, 1462-1482 of NM_019152) or mismatch control siRNA
were inserted into the Lentilox 3.7 shRNA vector. Infection of nor-
mal rat kidney cells with LV-CAPN1 shRNA or LV-Control shRNA
was performed. The cells were grown to 80% confluency, then in-
fected with 105 TU/well in six well plates. A reduction in Capn1 in
mRNA was evident at 5 days after lentiviral infection using Northern
blotting (A). Calpain 1 protein levels were significantly reduced in
the cells infected with LV-CAPN1 shRNA or LV-control shRNA
and were measured at 5 days after infection using Western blot
analysis (B, C). **p < 0.001, compared with control group, t test,
n = 3/group.
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Statistical analysis

Analysis was performed using StatView (SAS Institute, Cary,
NC). Data are presented as mean – standard error of the mean.
Group differences were evaluated by t test or repeated measures
analysis of variance and Bonferroni post hoc test as described
previously.25 Null hypotheses were rejected at the p < 0.05 level.
Although the BBB scale is an ordinal scale, differences between the
treatments were compared using parametric statistical methods
recommended by Scheff and colleagues.24

Results

Calpain 1 siRNA reduces calpain 1 levels in vitro

Initially, we evaluated two calpain 1 (100 nM) siRNAs (n = 4/

group) in NRK cells (3 · 105/well in six-well plates), measuring

calpain 1 or calpain 2 levels by Western blotting 48 h after trans-

fection (Fig. 1). Both siRNAs significantly reduced calpain 1 levels

while a negative control and mismatch control that differed from

the calpain 1 siRNA sequence 1 by a single nucleotide (see

Methods) did not significantly alter calpain 1 levels. Calpain1

siRNA 1 did not decrease calpain 2 levels (Fig. 1).

LV-CAPN1 shRNA reduces calpain 1 in vitro

At 5 days after transient transfection of NRK cells with LV-

CAPN1shRNA or LV-control shRNA (n = 3/group), LV-CAPN1-

shRNA significantly decreased levels of calpain 1 mRNA (Fig. 2A)

and protein (Fig. 2B, 2C) by 80% at 5 days after viral infection in

NRK cells compared with LV-control shRNA infection.

LV-CAPN 1 shRNA reduces calpain 1 expression in vivo

After intraspinal administration via convection enhanced de-

livery, expression of LV-CAPN1shRNA was examined by direct

visualization of eGFP with fluorescent microscopy (Fig. 3A). In-

traspinal delivery of LV-CAPN 1 shRNA (n = 3/group) resulted in

eGFP expression in the spinal cord 2 mm rostral and 2 mm caudal to

the injection site at 2 weeks post-injection.

Western blot analysis demonstrated that intraspinal administra-

tion of LV-CAPN1shRNA (n = 3/group) reduced calpain 1 protein

levels by 54% but did not have a significant effect on calpain 2 (Figs

3B–D).

Lentiviral-CAPN1 shRNA improves locomotor function
6 weeks after contusive SCI in rats

No significant differences in actual force, displacement, or ve-

locity were found between LV-CAPN1shRNA and LV-control

groups, indicating similar injuries to all animals (Table 1).

Immediately after SCI, all animals exhibited complete bilateral

hindlimb paralysis. Behavioral assessment demonstrated that rats

receiving LV-CAPN1shRNA exhibited improved locomotor per-

formance as early as 3 days post-injury, compared with rats re-

ceiving the LV-control shRNA, and the improvement persisted

until the last observation at 6 weeks post-injury, (Fig. 4, n = 10/

group). At 6 weeks post-injury, the rats treated with LV-

CAPN1shRNA had a mean BBB score of 12.4, indicative of

frequent to consistent weight-supported plantar steps and occa-

sional to frequent front limb-hind limb coordination.23 Rats ad-

ministered LV-control shRNA had a mean BBB score of 9 at 6

weeks post-injury, indicative of plantar placement of the paw with

weight support in stance only, but without weight-supported plantar

stepping.

Table 1. Injury Parameters

Treatment
group

Actual
force

(kdyn)
Displacement

(microns)
Velocity
(mm/sec)

LV-Control
shRNA

182 – 2 832 – 79 122 – 0.4

LV-CAPN1
shRNA

180 – 2 995 – 89 122 – 0.3

Values are mean – standard error of the mean. No significant differences
in impact force, displacement, and velocity were found between the
treatment groups (n = 10/group).

FIG. 3. Knockdown of calpain 1 with LV-CAPN1 shRNA
in vivo (A): Intraspinal diffusion of LV-CAPN1 shRNA by con-
vection enhanced delivery (unilateral injection at T10) resulted in
ipsilateral eGFP expression in the spinal cord at injection epi-
center and 2 mm rostral and 2 mm caudal to the injection epicenter
2 weeks post-infection in naı̈ve rats, compared to PBS diffused
control. The intraspinal administration of LV-CAPN1 shRNA
resulted in reduced levels of calpain 1 (B, C), but not calpain 2
(B,D), at two weeks post-injury, *p < 0.05.
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Lentiviral-CAPN1 shRNA attenuates lesion
volume and improves tissue sparing at 6 weeks
after contusive SCI

Histological assessment of lesion volume and tissue sparing

showed that intraspinal administration of LV-CAPN1shRNA re-

sulted in a decrease in lesion volume (Fig. 5) and significant in-

crease in total tissue sparing, white matter sparing, and gray matter

sparing (Fig. 6). The tissue sparing was evident up to 5 mm both

rostral and caudal to the lesion epicenter at 6 weeks post-injury

compared with animals receiving LV-control shRNA (n = 10/

group).

Discussion

Knockdown of calpain1 in the rat spinal cord by lentiviral

shRNA resulted in a significant attenuation in lesion volume and

improvement in tissue sparing and locomotor function after con-

tusive SCI. Although pre-injury administration of lentiviral parti-

cles is not feasible from a therapeutic standpoint, this approach

enabled examination of the role of the calpain 1 isoform, which is

not possible using current pharmacologic inhibitors. The results

support the hypothesis that calpain 1 activation contributes to the

tissue damage and impaired locomotor function after SCI, and

therefore represents a potential druggable target.

The improvement in locomotor function and tissue sparing ob-

served with calpain 1 knockdown is comparable to that observed

previously with broad-spectrum calpain inhibitors.19,26,27 This

suggests that of the several calpain isoforms present in the CNS,28

excessive activation of calpain 1 is a major contributor to the

neurodegeneration and resultant loss of motor function. Calpain 1

activation is relatively rapid after SCI,13 and the pre-injury

knockdown would be optimal for neuroprotection. This may ac-

count for the improvement in BBB scores observed as early as 3

days after injury. The early improvement in locomotor function is

consistent with pre-injury or immediate post-injury administration

of broad-spectrum small molecule calpain inhibitors.19,26,27

FIG. 4. LV-CAPN1 shRNA improves locomotor function fter
spinal cord injury (SCI). Pre-injury administration of LV-CAPN1
shRNA (triangles) resulted in improved locomotor performance
compared with LV-contro–pretreated animals (circles). Contusive
SCI was produced using the Infinite Horizons Impactor, 180 kdyn
setting, at T10. Data were presented as mean – standard error of
the mean and analyzed with repeated measures analysis of vari-
ance followed by Bonferroni post hoc analysis, *p < 0.05.

FIG. 5. Effects of the LV-CAPN1 shRNA pretreatment on lesion volume 6 weeks after severe contusive spinal cord injury (SCI). (A)
Photomicrographs of representative transverse spinal cord sections from rats at 42 days after contusive SCI (180 kdyn). The sections are
from the lesion epicenter and 1, 2, 4 mm rostral and caudal to the epicenter, obtained from a LV-control shRNA-treated rat (top panel)
and a LV-CAPN1-shRNA treated rat (bottom panel). The sections were stained with eriochrome cyanine for myelin. Scale bar: 100 lm.
(B) Pre-injury administration of LV-CAPN1 shRNA resulted in a significant decrease in lesion volume after contusion injury to the
spinal cord. Injury conditions and treatment groups are as described in Figure 4. Data were presented as mean – standard error of the
mean and analyzed by t test. *p < 0.05, n = 10/group.
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Although the results support a role for calpain 1 in the secondary

injury cascade, the therapeutic window for the beneficial effects of

calpain 1 knockdown or inhibition remain to be determined.

Administration of LV-CAPN1-shRNA into the spinal cord

would be expected to knock down calpain 1 levels in the sur-

rounding gray matter, but not in the ascending and descending

axons in the white matter whose cell bodies are distal to the areas

exposed to the lentiviral particles. Thus, the sparing observed in

white matter is unlikely to be the result of calpain 1 knockdown

within the affected axons. Excitotoxic mechanisms are implicated

in the degeneration of oligodendrocytes after SCI,29 and this is

mediated at least in part by calpain activation.30 Calpains are im-

plicated in the demyelination associated with multiple sclerosis,

and calpain inhibitors protect the white matter in animal models of

this disorder.31,32 Thus, the white matter sparing observed with LV-

Capn1-shRNA is thought to reflect protection of oligodendrocytes

after SCI.

It is also of interest that the approximately 2 mm diffusion of the

LV-Capn1 shRNA in the rostral and caudal direction resulted in

improved tissue sparing of up to 6 mm in both directions after SCI.

This is consistent with calpain-mediated cell death contributing to

the increase in lesion size with time after SCI, and that early in-

tervention minimizes lesion size and maintains axon-myelin in-

tegrity, resulting in maintained motor function.1

Additional support for the hypothesis that reduced calpain 1

protects against neurodegeneration was recently provided by

Bevers and colleagues,33 who found that calpain 1 knockdown with

RNAi attenuated proteolysis of the calpain substrate spectrin after

transient forebrain ischemia minimized the loss of hippocampal

CA1 neurons and preserved electrophysiologic function. In addi-

tion, calpain 1 null mice exhibited less cortical degeneration after

traumatic brain injury.28 The neuroprotective effect of decreased

calpain 1 against neurodegeneration after SCI had not been ex-

amined previously.

The results also demonstrate that convection enhanced deliv-

ery is an effective delivery method for lentiviral particles in the

rat spinal cord. Convection enhanced delivery is the use of a

slight pressure gradient during interstitial infusion to augment

diffusion and increase the distribution of both small and large

molecular weight molecules, including proteins.17 Intraspinal

administration of LV-CAPN1shRNA via convection enhanced

delivery provided rostral and caudal spread away from the in-

jection site, leading to a significant reduction in protein expres-

sion in the spinal cord.

FIG. 6. Effects of the LV-CAPN1 shRNA pre-treatment on tissue sparing 6 weeks after severe contusive spinal cord injury. Pre-injury
administration of LV-CAPN1 shRNA resulted in a significant increase in total tissue sparing (A, B), white matter sparing (C, D), and
gray matter sparing (E, F) after contusion injury to the spinal cord. Data were analyzed by t test (A, C, E) or repeated measures analysis
of variance followed by Bonferroni post-hoc analysis (B,D,E) *p < 0.05, **p < 0.01.
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Conclusion

The results demonstrated efficient lentiviral gene transfer of a

calpain1 shRNA through convection enhanced delivery in the

spinal cord of rats. Lentiviral calpain 1 shRNA administration

provided effective calpain 1 knockdown and resulted in improve-

ment in both tissue sparing and locomotor function, suggesting that

reduced calpain 1 activity is neuroprotective against SCI and rep-

resents a promising therapeutic target for SCI.
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