752 research outputs found

    A recurrent neural network with ever changing synapses

    Full text link
    A recurrent neural network with noisy input is studied analytically, on the basis of a Discrete Time Master Equation. The latter is derived from a biologically realizable learning rule for the weights of the connections. In a numerical study it is found that the fixed points of the dynamics of the net are time dependent, implying that the representation in the brain of a fixed piece of information (e.g., a word to be recognized) is not fixed in time.Comment: 17 pages, LaTeX, 4 figure

    Stochastic learning in a neural network with adapting synapses

    Full text link
    We consider a neural network with adapting synapses whose dynamics can be analitically computed. The model is made of NN neurons and each of them is connected to KK input neurons chosen at random in the network. The synapses are nn-states variables which evolve in time according to Stochastic Learning rules; a parallel stochastic dynamics is assumed for neurons. Since the network maintains the same dynamics whether it is engaged in computation or in learning new memories, a very low probability of synaptic transitions is assumed. In the limit N→∞N\to\infty with KK large and finite, the correlations of neurons and synapses can be neglected and the dynamics can be analitically calculated by flow equations for the macroscopic parameters of the system.Comment: 25 pages, LaTeX fil

    Reference concentrations for trace elements in urine for the Brazilian population based on q-ICP-MS with a simple dilute-and-shoot procedure

    Get PDF
    Biomonitoring of trace elements is of critical importance in human health assessment. However, trace element concentrations in biological fluids are affected by environmental and physiological parameters, and therefore considerable variations can occur between specific population subgroups. Brazil is a large country with large environmental diversity and with a limited knowledge of the reference values (baseline data) for trace elements in biological fluids. Atomic absorption spectrometry (AAS) and inductively coupled plasma emission spectrometry (ICP-OES) are still the dominant analytical techniques used for biomonitoring trace element analysis in clinical specimens. However, the use of ICP-MS is becoming more usual in clinical laboratory analysis. Then, we evaluated here a simple dilute-and-shoot method for sequential determination of Al, Ba, Be, Cd, Co, Cu, Cs, Mn, Ni, Pb, Pt, Sb, Se, Sn, Tl and U in urine by quadrupole inductively coupled plasma mass spectrometry (q-ICP-MS). Urine samples (500 µL) were accurately pipetted into conical tubes (15 mL) and diluted to 10 mL with a solution containing 0.5 % (v/v) HNO3 + 0.005% (v/v) Triton X-100. Diluted urine samples also contain rhodium, iridium and yttrium added as internal standards. After that, samples were directly analyzed by ICP-MS against matrix-matching calibration. Method detection limit (3s, n = 20) were in the ng L-1 range for all analytes. The method was applied to the analysis of 412 ordinary urine samples from Brazilian healthy and non-exposed subjects to establish reference values. Data validation was provided by the analysis of the standard reference material (SRM) 2670a toxic elements in urine (freeze-dried) (high and low levels) from the National Institute of Standards and Technology (NIST) and reference urine samples from the trace elements intercomparison program operated by the Institut National de Sante' Publique du Quebec, Canada.O biomonitoramento de elementos químicos é de extrema importância na avaliação da saúde humana. Entretanto, as concentrações dos elementos químicos nos fluidos biológicos são afetadas por parâmetros ambientais e fisiológicos e, consequentemente, consideráveis variações podem ocorrer entre subgrupos de populações específicas. O Brasil é um país com ampla diversidade ambiental e existe limitado conhecimento de valores de referência para elementos químicos em fluidos biológicos. A espectrometria de absorção atômica (AAS) e a espectrometria de emissão ótica com plasma acoplado indutivamente (ICP-OES) ainda são as técnicas analíticas mais comumente empregadas no biomonitoramento de elementos químicos em amostras clínicas. Entretanto, o uso da espectrometria de massas com plasma acoplado indutivamente (ICP-MS) está se tornando a cada dia mais comum nos laboratórios clínicos. Neste estudo, foi avaliado um método rápido envolvendo simples diluição da amostra para determinação de Al, Ba, Be, Cd, Co, Cu, Cs, Mn, Ni, Pb, Pt, Sb, Se, Sn, Tl e U em urina por ICP-MS. Amostras de urina (500 μL) foram pipetadas em frascos cônicos de 15 mL e diluídas para 10 mL com uma solução contendo 0,5 % (v/v) HNO3 + 0,005% (v/v) Triton X-100. Ródio, irídio e ítrio foram adicionados como padrões internos. Em seguida, as amostras foram diretamente analisadas por ICP-MS com calibração por ajuste de matriz. Os limites de detecção do método (3s, n = 20) foram da ordem de ng L-1 para todos os analitos em estudo. O método foi aplicado para a análise de 412 amostras de urina de brasileiros saudáveis e não expostos ambientalmente ou ocupacionalmente a metais para o estabelecimento de valores de referência na população brasileira. A validação dos resultados foi acompanhada pela análise de material de referência certificada de urina (SRM) 2670a proveniente do National Institute of Standards and Technology (NIST) e de materiais de referência provenientes do Institut National de Sante' Publique Du Quebec, no Canadá.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Hierarchical Self-Programming in Recurrent Neural Networks

    Full text link
    We study self-programming in recurrent neural networks where both neurons (the `processors') and synaptic interactions (`the programme') evolve in time simultaneously, according to specific coupled stochastic equations. The interactions are divided into a hierarchy of LL groups with adiabatically separated and monotonically increasing time-scales, representing sub-routines of the system programme of decreasing volatility. We solve this model in equilibrium, assuming ergodicity at every level, and find as our replica-symmetric solution a formalism with a structure similar but not identical to Parisi's LL-step replica symmetry breaking scheme. Apart from differences in details of the equations (due to the fact that here interactions, rather than spins, are grouped into clusters with different time-scales), in the present model the block sizes mim_i of the emerging ultrametric solution are not restricted to the interval [0,1][0,1], but are independent control parameters, defined in terms of the noise strengths of the various levels in the hierarchy, which can take any value in [0,\infty\ket. This is shown to lead to extremely rich phase diagrams, with an abundance of first-order transitions especially when the level of stochasticity in the interaction dynamics is chosen to be low.Comment: 53 pages, 19 figures. Submitted to J. Phys.

    Metal-insulator transition in EuO

    Full text link
    It is shown that the spectacular metal-insulator transition in Eu-rich EuO can be simulated within an extended Kondo lattice model. The different orders of magnitude of the jump in resistivity in dependence on the concentration of oxygen vacancies as well as the low-temperature resistance minimum in high-resistivity samples are reproduced quantitatively. The huge colossal magnetoresistance (CMR) is calculated and discussed

    The XY Spin-Glass with Slow Dynamic Couplings

    Full text link
    We investigate an XY spin-glass model in which both spins and couplings evolve in time: the spins change rapidly according to Glauber-type rules, whereas the couplings evolve slowly with a dynamics involving spin correlations and Gaussian disorder. For large times the model can be solved using replica theory. In contrast to the XY-model with static disordered couplings, solving the present model requires two levels of replicas, one for the spins and one for the couplings. Relevant order parameters are defined and a phase diagram is obtained upon making the replica-symmetric Ansatz. The system exhibits two different spin-glass phases, with distinct de Almeida-Thouless lines, marking continuous replica-symmetry breaking: one describing freezing of the spins only, and one describing freezing of both spins and couplings.Comment: 7 pages, Latex, 3 eps figure

    Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children

    Get PDF
    This is the author's PDF version of an article published in European Physical Education Review ©2002. The definitive version is available at http://epe.sagepub.com.Recent developments in the study of paediatric effort perception have continued to emphasise the importance of child-specific rating scales. The purpose of this study was to examine the validity of an illustrated 1 – 10 perceived exertion scale; the Pictorial Children’s Effort Rating Table (PCERT). 4 class groups comprising 104 children; 27 boys and 29 girls, aged 12.1±0.3 years and 26 boys, 22 girls, aged 15.3±0.2 years were selected from two schools and participated in the initial development of the PCERT. Subsequently, 48 of these children, 12 boys and 12 girls from each age group were randomly selected to participate in the PCERT validation study. Exercise trials were divided into 2 phases and took place 7 to 10 days apart. During phase 1, children completed 5 x 3-minute incremental stepping exercise bouts interspersed with 2-minute recovery periods. Heart rate (HR) and ratings of exertion were recorded during the final 15 s of each exercise bout. In phase 2 the children were asked to regulate their exercising effort during 4 x 4-minute bouts of stepping so that it matched randomly prescribed PCERT levels (3, 5, 7 and 9). Analysis of data from Phase 1 yielded significant (P<0.01) relationships between perceived and objective (HR) effort measures for girls. In addition, the main effects of exercise intensity on perceived exertion and HR were significant (P<0.01); perceived exertion increased as exercise intensity increased and this was reflected in simultaneous significant rises in HR. During phase 2, HR and estimated power output (POapprox) produced at each of the four prescribed effort levels were significantly different (P<0.01). The children in this study were able to discriminate between 4 different exercise intensities and regulate their exercise intensity according to 4 prescribed levels of perceived exertion. In seeking to contribute towards children’s recommended physical activity levels and helping them understand how to self-regulate their activity, the application of the PCERT within the context of physical education is a desirable direction for future research

    A solvable model of the genesis of amino-acid sequences via coupled dynamics of folding and slow genetic variation

    Full text link
    We study the coupled dynamics of primary and secondary structure formation (i.e. slow genetic sequence selection and fast folding) in the context of a solvable microscopic model that includes both short-range steric forces and and long-range polarity-driven forces. Our solution is based on the diagonalization of replicated transfer matrices, and leads in the thermodynamic limit to explicit predictions regarding phase transitions and phase diagrams at genetic equilibrium. The predicted phenomenology allows for natural physical interpretations, and finds satisfactory support in numerical simulations.Comment: 51 pages, 13 figures, submitted to J. Phys.

    Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution

    Full text link
    We study evolutionary canalization using a spin-glass model with replica theory, where spins and their interactions are dynamic variables whose configurations correspond to phenotypes and genotypes, respectively. The spins are updated under temperature T_S, and the genotypes evolve under temperature T_J, according to the evolutionary fitness. It is found that adaptation occurs at T_S < T_S^{RS}, and a replica symmetric phase emerges at T_S^{RSB} < T_S < T_S^{RS}. The replica symmetric phase implies canalization, and replica symmetry breaking at lower temperatures indicates loss of robustness.Comment: 5pages, 2 figure
    • …
    corecore