19,688 research outputs found
Coefficients and terms of the liquid drop model and mass formula
The coefficients of different combinations of terms of the liquid drop model
have been determined by a least square fitting procedure to the experimental
atomic masses. The nuclear masses can also be reproduced using a Coulomb radius
taking into account the increase of the ratio with increasing
mass, the fitted surface energy coefficient remaining around 18 MeV
Liquid-Drop Model and Quantum Resistance Against Noncompact Nuclear Geometries
The importance of quantum effects for exotic nuclear shapes is demonstrated.
Based on the example of a sheet of nuclear matter of infinite lateral
dimensions but finite thickness, it is shown that the quantization of states in
momentum space, resulting from the confinement of the nucleonic motion in the
conjugate geometrical space, generates a strong resistance against such a
confinement and generates restoring forces driving the system towards compact
geometries. In the liquid-drop model, these quantum effects are implicitly
included in the surface energy term, via a choice of interaction parameters, an
approximation that has been found valid for compact shapes, but has not yet
been scrutinized for exotic shapes.Comment: 9 pages with 3 figure
Stability of bubble nuclei through Shell-Effects
We investigate the shell structure of bubble nuclei in simple
phenomenological shell models and study their binding energy as a function of
the radii and of the number of neutron and protons using Strutinsky's method.
Shell effects come about, on the one hand, by the high degeneracy of levels
with large angular momentum and, on the other, by the big energy gaps between
states with a different number of radial nodes. Shell energies down to -40 MeV
are shown to occur for certain magic nuclei. Estimates demonstrate that the
calculated shell effects for certain magic numbers of constituents are probably
large enough to produce stability against fission, alpha-, and beta-decay. No
bubble solutions are found for mass number A < 450.Comment: 9 pages and 9 figures in the eps format include
Lunar contour mapping system /lucom/ final report, 5 aug. 1964 - 18 mar. 1965
Radar sensor system for acquisition of lunar surface data - Lunar contour mapping syste
Application of ERTS-1 data to analysis of agricultural crops and forests in Michigan
The results reported are based on analysis of ERTS Frame 1033-15580 collected over southwestern Lower Michigan on August 25, 1972. Major agricultural crops such as corn and soybeans were approaching maturity at this data and forest canopies were dense. Extensive ground truth information was gathered by detailed field study of test strips. This detailed information was supplemented over larger areas by interpretation of RB-57 and C-47 photography and MSS imagery. Recognition processing of ERTS-1 MSS data was carried out on a digital computer. Fields and forest stands were selected as training sets and test areas. Aerial imagery was essential for locating the positions of these selected areas on ERTS digital tapes. The recognition process was successful for each type of vegetation which had a dense green canopy such as forests, corn, and soybeans. Bare soil was also recognizable as a category
Thoracic Pressure Does Not Impact CSF Pressure via Compartment Compliance
Space acquired neuro-ocular syndrome (SANS) remains a difficult risk to characterize due to the complex multi-factorial etiology related to physiological responses to the spaceflight environment. Fluid shift and the resultant change on the Cardiovascular (CV) and cerebral spinal fluid systems (CSF) in the absence of gravity continue to be considered a contributing factor to the progression of SANS. In this study, we utilize a computational model of the CSF and CV interface to establish the sensitivity that intracranial pressure, and subsequently the optic nerve sheath pressure, exhibits due to variations in thoracic pressure, assuming the cranial perfusion pressure, i.e. mean arterial pressure (MAP) to central venous pressure (CVP), is known. Methods: The GRC Cross cutting computational modeling project created as model of the CSF and CV interaction within the cranial vault by extending the work of Stevens et al. [1] by modifying the representative anatomy to include a separate venous sinus, jugular veins, secondary veins and extra jugular pathways [2-3] to more adequately represent the vascular drainage pathways from the cranial vault (Figure 1). Assuming the MAP, CVP and thoracic pressure are known, we initiated this enhanced computational model assuming a supine positon and utilized a linear ramp to vary the thoracic pressure from the assumed supine state to the target pressure corresponding to set MAP and CVP values. The model generates the time based CSF pressure values (Figure2). Results and Conclusions: Following this analysis, CSF pressure shows significant independence from thoracic pressure changes (16 mmHg in thoracic pressure produces < 1mmHg change in CSF pressure), being mostly dependent on perfusion pressure. Similarly fluid redistribution is not predicted to be impacted over a level of 1mL. We note that this simulation represents an acute changes (order of 10's of minutes) and does not represent the long term effects
Development of computer software to analyze entire LANDSAT scenes and to summarize classification results of variable-size polygons
The Forest Pest Management Division (FPMD) of the Pennsylvania Bureau of Forestry has the responsibility for conducting annual surveys of the State's forest lands to accurately detect, map, and appraise forest insect infestations. A standardized, timely, and cost-effective method of accurately surveying forests and their condition should enhance the probability of suppressing infestations. The repetitive and synoptic coverage provided by LANDSAT (formerly ERTS) makes such satellite-derived data potentially attractive as a survey medium for monitoring forest insect damage over large areas. Forest Pest Management Division personnel have expressed keen interest in LANDSAT data and have informally cooperated with NASA/Goddard Space Flight Center (GSFC) since 1976 in the development of techniques to facilitate their use. The results of this work indicate that it may be feasible to use LANDSAT digital data to conduct annual surveys of insect defoliation of hardwood forests
From finite nuclei to the nuclear liquid drop: leptodermous expansion based on the self-consistent mean-field theory
The parameters of the nuclear liquid drop model, such as the volume, surface,
symmetry, and curvature constants, as well as bulk radii, are extracted from
the non-relativistic and relativistic energy density functionals used in
microscopic calculations for finite nuclei. The microscopic liquid drop energy,
obtained self-consistently for a large sample of finite, spherical nuclei, has
been expanded in terms of powers of A^{-1/3} (or inverse nuclear radius) and
the isospin excess (or neutron-to-proton asymmetry). In order to perform a
reliable extrapolation in the inverse radius, the calculations have been
carried out for nuclei with huge numbers of nucleons, of the order of 10^6. The
Coulomb interaction has been ignored to be able to approach nuclei of arbitrary
sizes and to avoid radial instabilities characteristic of systems with very
large atomic numbers. The main contribution to the fluctuating part of the
binding energy has been removed using the Green's function method to calculate
the shell correction. The limitations of applying the leptodermous expansion to
actual nuclei are discussed. While the leading terms in the macroscopic energy
expansion can be extracted very precisely, the higher-order, isospin-dependent
terms are prone to large uncertainties due to finite-size effects.Comment: 13 pages revtex4, 7 eps figures, submitted to Phys. Rev.
Initial Data for Black Holes and Black Strings in 5d
We explore time-symmetric hypersurfaces containing apparent horizons of black
objects in a 5d spacetime with one coordinate compactified on a circle. We find
a phase transition within the family of such hypersurfaces: the horizon has
different topology for different parameters. The topology varies from to
. This phase transition is discontinuous -- the topology of the
horizon changes abruptly. We explore the behavior around the critical point and
present a possible phase diagram.Comment: 4 pp, 3 figs. v3: Discussion extended including know variouse choices
of the source. The value of , errors and typos are corrected.
Conclusions clarified but ain't changed. More references added. Accepted for
publication in PR
Black Holes with a Generalized Gravitational Action
Microscopic black holes are sensitive to higher dimension operators in the
gravitational action. We compute the influence of these operators on the
Schwarzschild solution using perturbation theory. All (time reversal invariant)
operators of dimension six are included (dimension four operators don't alter
the Schwarzschild solution). Corrections to the relation between the Hawking
temperature and the black hole mass are found. The entropy is calculated using
the Gibbons-Hawking prescription for the Euclidean path integral and using
naive thermodynamic reasoning. These two methods agree, however, the entropy is
not equal to 1/4 the area of the horizon.Comment: plain tex(uses phyzzx.tex), 8 pages, CALT-68-185
- …