209 research outputs found

    HST images and properties of the most distant radio galaxies

    Get PDF
    We present Hubble Space Telescope images of 11 high redshift radio galaxies (between z=2.3z=2.3 and z=3.6z=3.6). The galaxies were observed with the WFPC2 camera in a broad band filter (F606W or F707W, roughly equivalent to V or R-band), for 2 orbits each. We find that on the scale of the HST observations there is a wide variety of morphological structures of the hosting galaxies: most objects have a clumpy, irregular appearance, consisting of a bright nucleus and a number of smaller components, suggestive of merging systems. Some observed structures could be due (at least partly) to the presence of dust distributed through the galaxies. The UV continuum emission is generally elongated and aligned with the axis of the radio sources, however the characteristics of the ``alignment effect'' differ from case to case, suggesting that the phenomenon cannot be explained by a single physical mechanism. We compare the properties of our radio galaxies with those of the UV dropout galaxies and conclude that (i) the most massive radio galaxies may well evolve from an aggregate of UV dropout galaxies and (ii) high redshift radio galaxies probably evolve into present day brightest cluster galaxies.Comment: 22 pages, 30 figures, accepted by A&

    Implications of pc and kpc jet asymmetry to the cosmic ray acceleration

    Full text link
    We probe the role that the directional asymmetry, between relativistic outflows and kilo-parsec scale jets, play in the acceleration of cosmic rays. For this reason we use two powerful, nearby Active Galactic Nuclei (AGNs). These radio galaxies are atypical compared to the usual AGN as they contain ring-like features instead of hotspots. Our VLBI radio data have revealed a substantial misalignment between their small and large scale jets. Taking into account the overall information we have obtained about the AGNs themselves (VLA and VLBI radio data at 18 cm) and their clusters (X-ray observations) our study supports the present ideas of powerful radiogalaxies (radio quiet and radio loud) being sources of cosmic rays as well as their ability to accelarate the latter to ultra high energies.Comment: 4 pages, Conference HEPRO II

    The Nascent Red Sequence at z~2

    Get PDF
    We present new constraints on the evolution of the early-type galaxy color-magnitude relation (CMR) based on deep near-infrared imaging of a galaxy protocluster at z=2.16 obtained using NICMOS on-board the Hubble Space Telescope. This field contains a spectroscopically confirmed space-overdensity of Lyman-alpha and H-alpha emitting galaxies which surrounds the powerful radio galaxy MRC 1138-262. Using these NICMOS data we identify a significant surface-overdensity (= 6.2x) of red J-H galaxies in the color-magnitude diagram (when compared with deep NICMOS imaging from the HDF-N and UDF). The optical-NIR colors of these prospective red-sequence galaxies indicate the presence of on-going dust-obscured star-formation or recently formed (<~ 1.5 Gyr)stellar populations in a majority of the red galaxies. We measure the slope and intrinsic scatter of the CMR for three different red galaxy samples selected by a wide color cut, and using photometric redshifts both with and without restrictions on rest-frame optical morphology. In all three cases both the rest-frame UBU-B slope and intrinsic color scatter are considerably higher than corresponding values for lower redshift galaxy clusters. These results suggest that while some relatively quiescent galaxies do exist in this protocluster both the majority of the galaxy population and hence the color-magnitude relation are still in the process of forming, as expected.Comment: 8 pages, 7 figures, accepted for publication in ApJ (to appear June 1, 2008, v679n2

    Protoclusters associated with z > 2 radio galaxies. I. Characteristics of high redshift protoclusters

    Get PDF
    [Abridged] We present the results of a large program conducted with the Very Large Telescope and Keck telescope to search for forming clusters of galaxies near powerful radio galaxies at 2.0 < z < 5.2. We obtained narrow- and broad-band images of nine radio galaxies and their surroundings. The imaging was used to select candidate Lyman alpha emitting galaxies in ~3x3 Mpc^2 areas near the radio galaxies. A total of 337 candidate emitters were found with a rest-frame Lyman alpha equivalent width of EW_0 > 15 A and Sigma = EW_0/Delta EW_0 > 3. Follow-up spectroscopy confirmed 168 Lyman alpha emitters near eight radio galaxies. The success rate of our selection procedure is 91%. At least six of our eight fields are overdense in Lyman alpha emitters by a factor 3-5. Also, the emitters show significant clustering in velocity space. In the overdense fields, the width of the velocity distributions of the emitters is a factor 2-5 smaller than the width of the narrow-band filters. Taken together, we conclude that we have discovered six forming clusters of galaxies (protoclusters). We estimate that roughly 75% of powerful (L_2.7GHz > 10^33 erg/s/Hz/sr) high redshift radio galaxies reside in a protocluster, with a sizes of at least 1.75 Mpc. We estimate that the protoclusters have masses in the range 2-9 x 10^14 Msun and they are likely to be progenitors of present-day (massive) clusters of galaxies. For the first time, we have been able to estimate the velocity dispersion of cluster progenitors from z~5 to ~2. The velocity dispersion of the emitters increases with cosmic time, in agreement with the dark matter velocity dispersion in numerical simulations of forming massive clusters.Comment: 30 pages, 20 figures. Published in A&A. The article with high resolution figures is available at http://www.ast.cam.ac.uk/~venemans/research/datapaper/index.htm

    Identifications and redshifts of faint 3CR radio sources

    Get PDF
    We report new and confirmed optical identifications of 12 3CR radio sources, and redshifts for nine of them. Seven have redshifts in excess of 1, with the highest being 1.841 for 3C 454.1; the remaining three sources are also likely to be at z > 1. One of the newly identified sources, 3C 194, shows a moderately strong Lyα emission, and may be a member of the new class of objects, possible young/forming galaxies, typified by 3C 326.1 and 3C 294. The optical identifications of the 3CR sources are now complete, and only six are lacking redshifts. Practically all of the new identifications are galaxies whose light appears to be dominated by stars, rather than nonthermal active nuclei, although their powerful radio emission argues that they are likely to be highly unusual objects. Their observed properties are similar to those of previously identified high-redshift powerful radio galaxies

    Keck Adaptive Optics Observations of the Radio Galaxy 3C294: A Merging System at z = 1.786?

    Get PDF
    We present seeing-limited and adaptive optics (AO) images of the z = 1.786 radio galaxy 3C294 in the H and K' infrared bands obtained at Keck Observatory. The infrared emission of 3C294 is dominated by two distinct components separated by ~1" (9 kpc). The eastern knot contains an unresolved core that contributes ~4% of the K'-band light; we identify this core with the active nucleus. The western component is about 2.5 times brighter. The most plausible interpretation of the near-infrared morphology is an ongoing merger event, with the active nucleus located in the less massive of the two galaxies.Comment: Accepted for Publication in Astrophysical Journa

    Polarized Narrow-Line Emission from the Nucleus of NGC 4258

    Get PDF
    The detection of polarized continuum and line emission from the nucleus of NGC 4258 by Wilkes et al. (1995) provides an intriguing application of the unified model of Seyfert nuclei to a galaxy in which there is known to be an edge-on, rotating disk of molecular gas surrounding the nucleus. Unlike most Seyfert nuclei, however, NGC 4258 has strongly polarized narrow emission lines. To further investigate the origin of the polarized emission, we have obtained spectropolarimetric observations of the NGC 4258 nucleus at the Keck-II telescope. The narrow-line polarizations range from 1.0% for [S II] 6716 to 13.9% for the [O II] 7319,7331 blend, and the position angle of polarization is oriented nearly parallel to the projected plane of the masing disk. A correlation between critical density and degree of polarization is detected for the forbidden lines, indicating that the polarized emission arises from relatively dense (n_e > 10^4 cm^-3) gas. An archival Hubble Space Telescope narrow-band [O III] image shows that the narrow-line region has a compact, nearly unresolved core, implying a FWHM size of <2.5 pc. We discuss the possibility that the polarized emission might arise from the accretion disk itself and become polarized by scattering within the disk atmosphere. A more likely scenario is an obscuring torus or strongly warped disk surrounding the inner portion of a narrow-line region which is strongly stratified in density. The compact size of the narrow-line region implies that the obscuring structure must be smaller than ~2.5 pc in diameter.Comment: To appear in the Astronomical Journal. 13 pages, including 1 table and 4 figures. Uses emulateapj.st
    corecore