5,463 research outputs found

    Ablation debris control by means of closed thick film filtered water immersion

    Get PDF
    The performance of laser ablation generated debris control by means of open immersion techniques have been shown to be limited by flow surface ripple effects on the beam and the action of ablation plume pressure loss by splashing of the immersion fluid. To eradicate these issues a closed technique has been developed which ensured a controlled geometry for both the optical interfaces of the flowing liquid film. This had the action of preventing splashing, ensuring repeatable machining conditions and allowed for control of liquid flow velocity. To investigate the performance benefits of this closed immersion technique bisphenol A polycarbonate samples have been machined using filtered water at a number of flow velocities. The results demonstrate the efficacy of the closed immersion technique: a 93% decrease in debris is produced when machining under closed filtered water immersion; the average debris particle size becomes larger, with an equal proportion of small and medium sized debris being produced when laser machining under closed flowing filtered water immersion; large debris is shown to be displaced further by a given flow velocity than smaller debris, showing that the action of flow turbulence in the duct has more impact on smaller debris. Low flow velocities were found to be less effective at controlling the positional trend of deposition of laser ablation generated debris than high flow velocities; but, use of excessive flow velocities resulted in turbulence motivated deposition. This work is of interest to the laser micromachining community and may aide in the manufacture of 2.5D laser etched patterns covering large area wafers and could be applied to a range of wavelengths and laser types

    Formation of Pentosidine during Nonenzymatic Browning of Proteins by Glucose

    Get PDF
    A fluorescent compound has been detected in proteins browned during Maillard reactions with glucose in vitro and shown to be identical to pentosidine, a pentose- derived fluorescent cross-link formed between arginine and lysine residues in collagen (Sell, D. R., and Monnier, V. M. (1989) J. Biol. Chem. 264, 21597- 2 1602). Pentosidine was the major fluorophore formed during nonenzymatic browning of ribonuclease and lysozyme by glucose, but accounted for \u3c1% of nondisulfide cross-links in protein dimers formed during the reaction. Pentosidine was formed in greatest yields in reactions of pentoses with lysine and arginine in model systems but was also formed from glucose, fructose, ascorbate, Amadori compounds, 3-deoxyglucosone, and other sugars. Pentosidine was not formed from peroxidized polyunsaturated fatty acids or malondialdehyde. Its formation from carbohydrates was inhibited under nitrogen or anaerobic conditions and by aminoguanidine, an inhibitor of advanced glycation and browning reactions. Pentosidine was detected in human lens proteins, where its concentration increased gradually with age, but it did not exceed trace concentrations (55 Fmol/mol lysine), even in the 80-year-old lens. Although its precise carbohydrate source in vivo is uncertain and it is present in only trace concentrations in tissue proteins, pentosidine appears to be a useful biomarker for assessing cumulative damage to proteins by nonenzymatic browning reactions with carbohydrates

    Image-based photo hulls for fast and photo-realistic new view synthesis

    Get PDF
    We present an efficient image-based rendering algorithm that generates views of a scene's photo hull. The photo hull is the largest 3D shape that is photo-consistent with photographs taken of the scene from multiple viewpoints. Our algorithm, image-based photo hulls (IBPH), like the image-based visual hulls (IBVH) algorithm from Matusik et al. on which it is based, takes advantage of epipolar geometry to efficiently reconstruct the geometry and visibility of a scene. Our IBPH algorithm differs from IBVH in that it utilizes the color information of the images to identify scene geometry. These additional color constraints result in more accurately reconstructed geometry, which often projects to better synthesized virtual views of the scene. We demonstrate our algorithm running in a realtime 3D telepresence application using video data acquired from multiple viewpoints

    Oxidized Amino Acids in Lens Protein with Age: Measurement of o-Tyrosine and Dityrosine in the Aging Human Lens

    Get PDF
    The concentrations of ortho-tyrosine (o-Tyr) and dityrosine (DT) were measured in noncataractous human lenses in order to assess the role of proteinoxidation reactions in the aging of lens proteins. The measurements were conducted by selected ion monitoring-gas chromatography/mass spectrometry using deuterium-labeled internal standards, which provided both high sensitivity and specificity for the quantitation of o-Tyr and DT. Between ages 1 and 78 years, the o-Tyr concentration in lens proteins varied from 0.3 to 0.9 mmol of o-Tyr/mol of Phe (n = 19), while DT ranged from 1 to 3 mumol of DT/mol of Tyr (n = 30). There were no significant changes in levels of o-Tyr with lens age. There was a statistically significant, but only slight, increase in DT in lens proteins with age (approximately 33% increases between ages 1 and 78, r = 0.5, p \u3c 0.01). At the same time, totalprotein fluorescence, measured at DT wavelengths (Ex = 317 nm, Em = 407 nm), increased 11-fold between ages 1 and 78 and correlated strongly with age (r = 0.82, p \u3c 0.0001). Although the fluorescence maxima of lens proteins were similar to those of DT, DT accounted for less than 1% of the DT-like fluorescence in lens protein at all ages. These observations indicate that oxidation of Phe and Tyr plays a limited role in the normal aging of lens proteins in vivo

    Effect of Phosphate on the Kinetics and Specificity of Glycation of Protein

    Get PDF
    The glycation (nonenzymatic glycosylation) of several proteins was studied in various buffiner os rder to assess the effects of buffering ions on the kinetics and specificity of glycation of protein. Incubation of RNase with glucose in phosphate buffer resulted in inactivation of the enzyme because of preferential modification of lysine residues ino r near the activsei te. In contrast, in the cationic buffers, 3-(N-morpholino)propanesulfonic acid and 3-(N-tris(hydroxymethyl)rnethylamino)- 2-hydroxypropanesulfonica cid, the kineticso f glycation of RNase were decreased 2- to 3-fold, there was a decrease in glycation of active site versus peripheral lysines, and the enzyme was resistant to inactivation by glucose. The extent of Schiff base formation on RNase was comparable in the three buffers, suggesting that phosphate, bound in the active site of RNase, catalyzed the Amadori rearrangement at active site lysines, leading to the enhanced rate of inactivation of the enzyme. Phosphate catalysis of glycation was concentration-dependent and could be mimicked by arsenate. Phosphate also stimulated the rate of glycation of other proteins, such as lysozyme, cytochrome c, albumin, and hemoglobin. As with RNase, phosphate affected the specificity of glycation of hemoglobin, resulting in increasegdly cation of amino-terminal valine versus intrachain lysine residues. 2,3-Diphosphoglycerate exerted similar effeocnt st he glycation of hemoglobin, suggesting that inorganic and organic phosphates may play an important role in determining the kinetics and specificity of glycation of hemoglobin in the red cell. Overall, these studies establishth at buffering ions or ligands can exert significant effects on the kinetics ands pecificity of glycation of proteins

    X-Ray Observations of the supernova remnant G21.5-0.9

    Full text link
    We present the analysis of archival X-ray observations of the supernova remnant (SNR) G21.5-0.9. Based on its morphology and spectral properties, G21.5-0.9 has been classified as a Crab-like SNR. In their early analysis of the CHANDRA calibration data, Slane et al. (2000) discovered a low-surface-brightness, extended emission. They interpreted this component as the blast wave formed in the supernova (SN) explosion. In this paper, we present the CHANDRA analysis using a total exposure of ~150 ksec. We also include ROSAT and ASCA observations. Our analysis indicates that the extended emission is non-thermal -- a result in agreement with XMM observations. The entire remnant of radius ~ 2'.5 is best fitted with a power law model with a photon index steepening away from the center. The total unabsorbed flux in the 0.5-10 keV is 1.1E-10 erg/cm2/s with an 85% contribution from the 40" radius inner core. Timing analysis of the High-Resolution Camera (HRC) data failed to detect any pulsations. We put a 16% upper limit on the pulsed fraction. We derive the physical parameters of the putative pulsar and compare them with those of other plerions (such as the Crab and 3C 58). G21.5-0.9 remains the only plerion whose size in X-rays is bigger than in the radio. Deep radio observations will address this puzzle.Comment: 23 pages including 11 figures and 3 tables; accepted by ApJ June 22, 2001; to appear in Oct 20, 2001 issue of Ap
    • 

    corecore