74 research outputs found

    Early spring sex differences in luteinizing hormone response to gonadotropin releasing hormone in co-occurring resident and migrant dark-eyed juncos (Junco hyemalis)

    Get PDF
    AbstractTo optimally time reproduction, animals must coordinate changes in the hypothalamo-pituitary-gonadal (HPG) axis. The extent of intra-species variation in seasonal timing of reproductive function is considerable, both within and among populations. Dark-eyed junco (Junco hyemalis) populations are known to differ in their reproductive timing response to cues experienced in the same habitat in late winter/early spring. Specifically in juncos cohabitating on shared wintering grounds, residents initiate breeding and reproductive activity but migrants delay reproductive development and prepare to migrate before breeding. Here, we test the hypothesis that the pituitary gland acts as a ‘control point’ to modulate differential HPG axis activity across populations. We sampled free-living resident and migrant juncos on their shared over-wintering grounds in March, thus all individuals were experiencing the same environmental cues, including photoperiod. We predicted that during this critical time of transition, residents would more readily respond to repeated gonadotropin releasing hormone (GnRH) stimulation with increases in luteinizing hormone (LH), in contrast to migrants, which should delay full reproductive activity. Our data indicate that migrant females, while still on the overwintering grounds, have a reduced LH response to repeated GnRH injections compared to resident females. Male migrant and resident birds did not differ in their responsiveness to repeated GnRH. Our results suggest a sex difference in the costs of mistimed activation of the HPG axis, with female migrants being less responsive than residents females and males to repeated stimulation. Further, our data implicate a key role for the pituitary in regulating appropriate reproductive timing responses

    Brain function assessment in different conscious states

    Get PDF
    Background: The study of brain functioning is a major challenge in neuroscience fields as human brain has a dynamic and ever changing information processing. Case is worsened with conditions where brain undergoes major changes in so-called different conscious states. Even though the exact definition of consciousness is a hard one, there are certain conditions where the descriptions have reached a consensus. The sleep and the anesthesia are different conditions which are separable from each other and also from wakefulness. The aim of our group has been to tackle the issue of brain functioning with setting up similar research conditions for these three conscious states.Methods: In order to achieve this goal we have designed an auditory stimulation battery with changing conditions to be recorded during a 40 channel EEG polygraph (Nuamps) session. The stimuli (modified mismatch, auditory evoked etc.) have been administered both in the operation room and the sleep lab via Embedded Interactive Stimulus Unit which was developed in our lab. The overall study has provided some results for three domains of consciousness. In order to be able to monitor the changes we have incorporated Bispectral Index Monitoring to both sleep and anesthesia conditions.Results: The first stage results have provided a basic understanding in these altered states such that auditory stimuli have been successfully processed in both light and deep sleep stages. The anesthesia provides a sudden change in brain responsiveness; therefore a dosage dependent anesthetic administration has proved to be useful. The auditory processing was exemplified targeting N1 wave, with a thorough analysis from spectrogram to sLORETA. The frequency components were observed to be shifting throughout the stages. The propofol administration and the deeper sleep stages both resulted in the decreasing of N1 component. The sLORETA revealed similar activity at BA7 in sleep (BIS 70) and target propofol concentration of 1.2 μg/mL.Conclusions: The current study utilized similar stimulation and recording system and incorporated BIS dependent values to validate a common approach to sleep and anesthesia. Accordingly the brain has a complex behavior pattern, dynamically changing its responsiveness in accordance with stimulations and states. © 2010 Ozgoren et al; licensee BioMed Central Ltd

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe

    Reversible light and air-driven lithography by singlet oxygen

    No full text

    Improved Motion Artifact Correction in fNIRS Data by Combining Wavelet and Correlation-Based Signal Improvement

    No full text
    Functional near-infrared spectroscopy (fNIRS) is an optical non-invasive neuroimaging technique that allows participants to move relatively freely. However, head movements frequently cause optode movements relative to the head, leading to motion artifacts (MA) in the measured signal. Here, we propose an improved algorithmic approach for MA correction that combines wavelet and correlation-based signal improvement (WCBSI). We compare its MA correction accuracy to multiple established correction approaches (spline interpolation, spline-Savitzky–Golay filter, principal component analysis, targeted principal component analysis, robust locally weighted regression smoothing filter, wavelet filter, and correlation-based signal improvement) on real data. Therefore, we measured brain activity in 20 participants performing a hand-tapping task and simultaneously moving their head to produce MAs at different levels of severity. In order to obtain a “ground truth” brain activation, we added a condition in which only the tapping task was performed. We compared the MA correction performance among the algorithms on four predefined metrics (R, RMSE, MAPE, and ΔAUC) and ranked the performances. The suggested WCBSI algorithm was the only one exceeding average performance (p < 0.001), and it had the highest probability to be the best ranked algorithm (78.8% probability). Together, our results indicate that among all algorithms tested, our suggested WCBSI approach performed consistently favorably across all measures

    Abrupt switch to migratory night flight in a wild migratory songbird

    No full text
    Every year, billions of wild diurnal songbirds migrate at night. To do so, they shift their daily rhythm from diurnality to nocturnality. In captivity this is observed as a gradual transition of daytime activity developing into nocturnal activity, but how wild birds prepare their daily rhythms for migration remains largely unknown. Using an automated radio-telemetry system, we compared activity patterns of free-living migrant and resident European blackbirds (Turdus merula) in a partially migratory population during the pre-migratory season. We found that activity patterns between migrant and resident birds did not differ during day and night. Migrants did not change their daily rhythm in a progressive manner as has been observed in captivity, but instead abruptly became active during the night of departure. The rapid shift in rhythmicity might be more common across migratory songbird species, but may not have been observed before in wild animals due to a lack of technology.publishe
    corecore