338 research outputs found

    Positive ion reactions

    Get PDF
    Laboratory methods for determining total cross sections and reaction rate coefficients for ion-neutral reactions involving positive ion

    Excitation of atomic hydrogen to the metasable 2 2S1/2 state by electron impact

    Get PDF
    Atomic hydrogen excitation to metastable 2 /2/ S sub 1/2 state by electron impac

    Polarization of Lyman alpha radiation emitted by H/2S/ atoms in weak electric fields

    Get PDF
    Polarization prediction in modulated beam of ground state hydrogen atoms crossed by dc electron bea

    Excitation of Na D-line radiation in collisions of sodium atoms with internally excited H2, D2, and N2

    Get PDF
    Excitation of D-line radiation in collisions of Na atoms with vibrationally excited N2, H2 and D2 was studied in two modulated crossed beam experiments. In both experiments, the vibrational excitation of the molecules was provided by heating the molecular beam source to temperatures in the range of 2000 to 3000 K, which was assumed to give populations according to the Boltzmann expression. In the first experiment, a total rate coefficient was measured as a function of molecular beam temperature, with absolute calibration of the photon detector being made using the black body radiation from the heated molecular beam source. Since heating affects both the internal energy and the collisional kinetic energy, the first experiment could not determine the relative contributions of internal energy transfer versus collisional excitation. The second experiment achieved partial separation of internal versus kinetic energy transfer effects by using a velocity-selected molecular beam. Using two simple models for the kinetic energy dependence of the transfer cross section for a given change in vibrational quantum number, the data from both experiments were used to determine parameters in the models

    The atom-molecule reaction D plus H2 yields HD plus H studied by molecular beams

    Get PDF
    Collisions between deuterium atoms and hydrogen molecules were studied in a modulated crossed beam experiment. The relative signal intensity and the signal phase for the product HD from reactive collisions permitted determination of both the angular distribution and HD mean velocity as a function of angle. From these a relative differential reactive scattering cross section in center-of-mass coordinates was deduced. The experiment indicates that reactively formed HD which has little or no internal excitation departs from the collision anisotropically, with maximum amplitude 180 deg from the direction of the incident D beam in center-of-mass coordinates, which shows that the D-H-H reacting configuration is short-lived compared to its rotation time. Non reactive scattering of D by H2 was used to assign absolute values to the differential reactive scattering cross sections

    Transfer of excitation energy from nitrogen molecules to sodium atoms

    Get PDF
    Transfer of excitation energy from nitrogen molecules to sodium atom

    The polarization of Lyman alpha radiation produced by direct excitation of hydrogen atoms by proton impact

    Get PDF
    Lyman alpha radiation measurement in collision between protons and hydrogen atom

    The polarization of Lyman alpha radiation produced in charge transfer collisions between protons and the inert gases

    Get PDF
    Polarization of Lyman alpha radiation in proton collisions with helium, argon, and neon atom

    Acoustical structured illumination for super-resolution ultrasound imaging.

    Get PDF
    Structured illumination microscopy is an optical method to increase the spatial resolution of wide-field fluorescence imaging beyond the diffraction limit by applying a spatially structured illumination light. Here, we extend this concept to facilitate super-resolution ultrasound imaging by manipulating the transmitted sound field to encode the high spatial frequencies into the observed image through aliasing. Post processing is applied to precisely shift the spectral components to their proper positions in k-space and effectively double the spatial resolution of the reconstructed image compared to one-way focusing. The method has broad application, including the detection of small lesions for early cancer diagnosis, improving the detection of the borders of organs and tumors, and enhancing visualization of vascular features. The method can be implemented with conventional ultrasound systems, without the need for additional components. The resulting image enhancement is demonstrated with both test objects and ex vivo rat metacarpals and phalanges

    An investigation of computer coupled automatic activation analysis and remote lunar analysis Quarterly progress report, 1 Nov. 1962 - 1 Feb. 1963

    Get PDF
    Mark II automatic activation analysis system, influence of radiation on silver ion migration in mice, selenium determination in submicrogram quantities, and remote lunar analysi
    • …
    corecore