4,775 research outputs found
Dynamic characteristics and processing of fillers in polyurethane elastomers for vibration damping applications
Polyurethane elastomers have the potential of being used to reduce vibrational noise in many engineering applications. The performance of the elastomer is directly related to matching the nature of the mechanical loss characteristics to the frequency and temperature dependence of the source of the vibration. Materials with a broad frequency response and good mechanical properties are desirable for situations were load bearing and isolation becomes an issue. Because automobile, and other related vehicles operate over a broad temperature range, it is desirable for the damping characteristics of the elastomer to ideally be independent of temperature and frequency. In practice, this is not possible and the creation of materials with a broad spectrum response is desirable. In this paper, the effects of various fillers on the breadth and temperature dependence of the vibration damping characteristics of a filled and crosslinked polyurethane elastomer are explored. The fillers studied are wollastonite, barium sulphate and talc. These materials have different shapes, sizes and surface chemistry and undergo different types of interaction with the matrix. The vibration damping characteristics were further varied by the use of a crosslinking agent. Data presented on the rheological characteristics indicate the strength of the filler-polyol interactions. Dielectric relaxation and dynamic mechanical thermal analysis demonstrate the way in which changes in the type of filler, concentration and amount of crosslinker lead to changes in the location and breadth of the energy dissipation process in these elastomers. The vibration damping characteristics of a selected material are presented to demonstrate the potential of these materials
Revealing the pure confinement effect in glass-forming liquids by dynamic mechanical analysis
Many molecular glass forming liquids show a shift of the glass transition Tg
to lower temperatures when the liquid is confined into mesoporous host
matrices. Two contrary explanations for this effect are given in literature:
First, confinement induced acceleration of the dynamics of the molecules leads
to an effective downshift of Tg increasing with decreasing pore size. Secondly,
due to thermal mismatch between the liquid and the surrounding host matrix,
negative pressure develops inside the pores with decreasing temperature, which
also shifts Tg to lower temperatures. Here we present novel dynamic mechanical
analysis measurements of the glass forming liquid salol in Vycor and Gelsil
with pore sizes of d = 2.6, 5.0 and 7.5 nm. The dynamic complex elastic
susceptibility data can be consistently described with the assumption of two
relaxation processes inside the pores: A surface induced slowed down relaxation
due to interaction with rough pore interfaces and a second relaxation within
the core of the pores. This core relaxation time is reduced with decreasing
pore size d, leading to a downshift of Tg in perfect agreement with recent DSC
measurements
Confinement effects on glass forming liquids probed by DMA
Many molecular glass forming liquids show a shift of the glass transition T-g
to lower temperatures when the liquid is confined into mesoporous host
matrices. Two contrary explanations for this effect are given in literature:
First, confinement induced acceleration of the dynamics of the molecules leads
to an effective downshift of T-g increasing with decreasing pore size. Second,
due to thermal mismatch between the liquid and the surrounding host matrix,
negative pressure develops inside the pores with decreasing temperature, which
also shifts T-g to lower temperatures. Here we present dynamic mechanical
analysis measurements of the glass forming liquid salol in Vycor and Gelsil
with pore sizes of d=2.6, 5.0 and 7.5 nm. The dynamic complex elastic
susceptibility data can be consistently described with the assumption of two
relaxation processes inside the pores: A surface induced slowed down relaxation
due to interaction with rough pore interfaces and a second relaxation within
the core of the pores. This core relaxation time is reduced with decreasing
pore size d, leading to a downshift of T-g proportional to 1/d in perfect
agreement with recent differential scanning calorimetry (DSC) measurements.
Thermal expansion measurements of empty and salol filled mesoporous samples
revealed that the contribution of negative pressure to the downshift of T-g is
small (<30%) and the main effect is due to the suppression of dynamically
correlated regions of size xi when the pore size xi approaches
The relaxation dynamics of a simple glass former confined in a pore
We use molecular dynamics computer simulations to investigate the relaxation
dynamics of a binary Lennard-Jones liquid confined in a narrow pore. We find
that the average dynamics is strongly influenced by the confinement in that
time correlation functions are much more stretched than in the bulk. By
investigating the dynamics of the particles as a function of their distance
from the wall, we can show that this stretching is due to a strong dependence
of the relaxation time on this distance, i.e. that the dynamics is spatially
very heterogeneous. In particular we find that the typical relaxation time of
the particles close to the wall is orders of magnitude larger than the one of
particles in the center of the pore.Comment: 9 pages of Latex, 4 figure
Cooperative motion and growing length scales in supercooled confined liquids
Using molecular dynamics simulations we investigate the relaxation dynamics
of a supercooled liquid close to a rough as well as close to a smooth wall. For
the former situation the relaxation times increase strongly with decreasing
distance from the wall whereas in the second case they strongly decrease. We
use this dependence to extract various dynamical length scales and show that
they grow with decreasing temperature. By calculating the frequency dependent
average susceptibility of such confined systems we show that the experimental
interpretation of such data is very difficult.Comment: 7 pages of Latex, 3 figure
Irreversible Processes in Inflationary Cosmological Models
By using the thermodynamic theory of irreversible processes and Einstein
general relativity, a cosmological model is proposed where the early universe
is considered as a mixture of a scalar field with a matter field. The scalar
field refers to the inflaton while the matter field to the classical particles.
The irreversibility is related to a particle production process at the expense
of the gravitational energy and of the inflaton energy. The particle production
process is represented by a non-equilibrium pressure in the energy-momentum
tensor. The non-equilibrium pressure is proportional to the Hubble parameter
and its proportionality factor is identified with the coefficient of bulk
viscosity. The dynamic equations of the inflaton and the Einstein field
equations determine the time evolution of the cosmic scale factor, the Hubble
parameter, the acceleration and of the energy densities of the inflaton and
matter. Among other results it is shown that in some regimes the acceleration
is positive which simulates an inflation. Moreover, the acceleration decreases
and tends to zero in the instant of time where the energy density of matter
attains its maximum value.Comment: 13 pages, 2 figures, to appear in PR
Fingerprints of homogeneous nucleation and crystal growth in polyamide 66 as studied by combined infrared spectroscopy and fast scanning chip calorimetry
Homogenous crystal nucleation and growth in polyamide 66 (PA66) are followed in situ by means of a combination of FTIR spectroscopy and fast scanning chip calorimetry (FSC). Therefore, a novel setup with a calorimetry chip equipped with an IR-transparent SiN membrane was developed, which enables to examine IR spectroscopic and FSC experiments on the identical specimen. Because of the small amount of sample material (~ 100 ng), it is possible to achieve heating and cooling rates up to 5000 Ks−1, and hence to quench the sample into a fully amorphous state without quenched-in homogeneous crystal nuclei. Annealing the film then allows to determine the onset of homogenous nucleation and crystal growth by means of FSC, whereas molecular interactions are unraveled by FTIR spectroscopy. It is demonstrated that different moieties of PA66 respond distinctly during crystallization; far-reaching interactions such as hydrogen bonding are established prior to onset of short-range steric hindrance
Analysis of the Reaction Rate Coefficients for Slow Bimolecular Chemical Reactions
Simple bimolecular reactions are analyzed
within the framework of the Boltzmann equation in the initial stage of a
chemical reaction with the system far from chemical equilibrium. The
Chapman-Enskog methodology is applied to determine the coefficients of the
expansion of the distribution functions in terms of Sonine polynomials for
peculiar molecular velocities. The results are applied to the reaction
, and the influence of the non-Maxwellian
distribution and of the activation-energy dependent reactive cross sections
upon the forward and reverse reaction rate coefficients are discussed.Comment: 11 pages, 5 figures, to appear in vol.42 of the Brazilian Journal of
Physic
The Supersonic Project: SIGOs, A Proposed Progenitor to Globular Clusters, and Their Connections to Gravitational-wave Anisotropies
Supersonically induced gas objects (SIGOs), are structures with little to no dark-matter component predicted to exist in regions of the universe with large relative velocities between baryons and dark matter at the time of recombination. They have been suggested to be the progenitors of present-day globular clusters. Using simulations, SIGOs have been studied on small scales (around 2 Mpc) where these relative velocities are coherent. However, it is challenging to study SIGOs using simulations on large scales due to the varying relative velocities at scales larger than a few Mpc. Here, we study SIGO abundances semi-analytically: using perturbation theory, we predict the number density of SIGOs analytically, and compare these results to small-box numerical simulations. We use the agreement between the numerical and analytic calculations to extrapolate the large-scale variation of SIGO abundances over different stream velocities. As a result, we predict similar large-scale variations of objects with high gas densities before reionization that could possibly be observed by JWST. If indeed SIGOs are progenitors of globular clusters, then we expect a similar variation of globular cluster abundances over large scales. Significantly, we find that the expected number density of SIGOs is consistent with observed globular cluster number densities. As a proof-of-concept, and because globular clusters were proposed to be natural formation sites for gravitational wave sources from binary black-hole mergers, we show that SIGOs should imprint an anisotropy on the gravitational wave signal on the sky, consistent with their distribution
Approximate square-root-time relaxation in glass-forming liquids
We present data for the dielectric relaxation of 43 glass-forming organic
liquids, showing that the primary (alpha) relaxation is often close to
square-root-time relaxation. The better an inverse power-law description of the
high-frequency loss applies, the more accurately is square-root-time relaxation
obeyed. These findings suggest that square-root-time relaxation is generic to
the alpha process, once a common view, but since long believed to be incorrect.
Only liquids with very large dielectric losses deviate from this picture by
having consistently narrower loss peaks. As a further challenge to the
prevailing opinion, we find that liquids with accurate square-root-time
relaxation cover a wide range of fragilities
- …