5,352 research outputs found
New Phases of Water Ice Predicted at Megabar Pressures
Based on density functional calculations we predict water ice to attain two
new crystal structures with Pbca and Cmcm symmetry at 7.6 and 15.5 Mbar,
respectively. The known high pressure ice phases VII, VIII, X, and Pbcm as well
as the Pbca phase are all insulating and composed of two interpenetrating
hydrogen bonded networks, but the Cmcm structure is metallic and consists of
corrugated sheets of H and O atoms. The H atoms are squeezed into octahedral
positions between next-nearest O atoms while they occupy tetrahedral positions
between nearest O atoms in the ice X, Pbcm, and Pbca phases.Comment: submitted to Physical Review Letters on Jan 25, 201
A Theory for the Radius of the Transiting Giant Planet HD 209458b
Using a full frequency-dependent atmosphere code that can incorporate
irradiation by a central primary star, we calculate self-consistent boundary
conditions for the evolution of the radius of the transiting planet HD 209458b.
Using a well-tested extrasolar giant planet evolutionary code, we then
calculate the behavior of this planet's radius with age. The measured radius is
in fact a transit radius that resides high in HD 209458b's inflated atmosphere.
Using our derived atmospheric and interior structures, we find that irradiation
plus the proper interpretation of the transit radius can yield a theoretical
radius that is within the measured error bars. We conclude that if HD 209458b's
true transit radius is at the lower end of the measured range, an extra source
of core heating power is not necessary to explain the transit observations.Comment: 6 pages in emulateapj format, plus 2 figures (one color), accepted to
the Astrophysical Journa
Broad band sound from wind turbine generators
Brief descriptions are given of the various types of large wind turbines and their sound characteristics. Candidate sources of broadband sound are identified and are rank ordered for a large upwind configuration wind turbine generator for which data are available. The rotor is noted to be the main source of broadband sound which arises from inflow turbulence and from the interactions of the turbulent boundary layer on the blade with its trailing edge. Sound is radiated about equally in all directions but the refraction effects of the wind produce an elongated contour pattern in the downwind direction
Gutzwiller variational theory for the Hubbard model with attractive interaction
We investigate the electronic and superconducting properties of a negative-U
Hubbard model. For this purpose we evaluate a recently introduced variational
theory based on Gutzwiller-correlated BCS wave functions. We find significant
differences between our approach and standard BCS theory, especially for the
superconducting gap. For small values of , we derive analytical
expressions for the order parameter and the superconducting gap which we
compare to exact results from perturbation theory.Comment: 10 pages, 2 figure
Compressibility of the Two-Dimensional infinite-U Hubbard Model
We study the interactions between the coherent quasiparticles and the
incoherent Mott-Hubbard excitations and their effects on the low energy
properties in the Hubbard model. Within the framework of a
systematic large-N expansion, these effects first occur in the next to leading
order in 1/N. We calculate the scattering phase shift and the free energy, and
determine the quasiparticle weight Z, mass renormalization, and the
compressibility. It is found that the compressibility is strongly renormalized
and diverges at a critical doping . We discuss the nature
of this zero-temperature phase transition and its connection to phase
separation and superconductivity.Comment: 4 pages, 3 eps figures, final version to appear in Phys. Rev. Let
Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation
The charge and spin dynamics of the two-dimensional Hubbard model in the
paramagnetic phase is first studied by means of the two-pole approximation
within the framework of the Composite Operator Method. The fully
self-consistent scheme requires: no decoupling, the fulfillment of both Pauli
principle and hydrodynamics constraints, the simultaneous solution of fermionic
and bosonic sectors and a very rich momentum dependence of the response
functions. The temperature and momentum dependencies, as well as the dependency
on the Coulomb repulsion strength and the filling, of the calculated charge and
spin susceptibilities and correlation functions are in very good agreement with
the numerical calculations present in the literature
Tone-activated, remote, alert communication system
Pocket sized transmitter, frequency modulated by crystal derived tones, with integral loop antenna provides police with easy operating alert signal communicator which uses patrol car radio to relay signal. Communication channels are time shared by several patrol units
Mott-Hubbard insulators for systems with orbital degeneracy
We study how the electron hopping reduces the Mott-Hubbard band gap in the
limit of a large Coulomb interaction U and as a function of the orbital
degeneracy N. The results support the conclusion that the hopping contribution
grows as roughly \sqrt{N}W, where W is the one-particle band width, but in
certain models a crossover to a \sim NW behavior is found for a sufficiently
large N.Comment: 7 pages, revtex, 6 figures more information at
http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene
A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method
We have investigated the antiferromagnetic phase of the 2D, the 3D and the
extended Hubbard models on a bipartite cubic lattice by means of the Composite
Operator Method within a two-pole approximation. This approach yields a fully
self-consistent treatment of the antiferromagnetic state that respects the
symmetry properties of both the model and the algebra. The complete phase
diagram, as regards the antiferromagnetic and the paramagnetic phases, has been
drawn. We firstly reported, within a pole approximation, three kinds of
transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We
have also found a metal-insulator transition, driven by doping, within the
antiferromagnetic phase. This latter is restricted to a very small region near
half filling and has, in contrast to what has been found by similar approaches,
a finite critical Coulomb interaction as lower bound at half filling. Finally,
it is worth noting that our antiferromagnetic gap has two independent
components: one due to the antiferromagnetic correlations and another coming
from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.
- …