5,352 research outputs found

    New Phases of Water Ice Predicted at Megabar Pressures

    Full text link
    Based on density functional calculations we predict water ice to attain two new crystal structures with Pbca and Cmcm symmetry at 7.6 and 15.5 Mbar, respectively. The known high pressure ice phases VII, VIII, X, and Pbcm as well as the Pbca phase are all insulating and composed of two interpenetrating hydrogen bonded networks, but the Cmcm structure is metallic and consists of corrugated sheets of H and O atoms. The H atoms are squeezed into octahedral positions between next-nearest O atoms while they occupy tetrahedral positions between nearest O atoms in the ice X, Pbcm, and Pbca phases.Comment: submitted to Physical Review Letters on Jan 25, 201

    A Theory for the Radius of the Transiting Giant Planet HD 209458b

    Full text link
    Using a full frequency-dependent atmosphere code that can incorporate irradiation by a central primary star, we calculate self-consistent boundary conditions for the evolution of the radius of the transiting planet HD 209458b. Using a well-tested extrasolar giant planet evolutionary code, we then calculate the behavior of this planet's radius with age. The measured radius is in fact a transit radius that resides high in HD 209458b's inflated atmosphere. Using our derived atmospheric and interior structures, we find that irradiation plus the proper interpretation of the transit radius can yield a theoretical radius that is within the measured error bars. We conclude that if HD 209458b's true transit radius is at the lower end of the measured range, an extra source of core heating power is not necessary to explain the transit observations.Comment: 6 pages in emulateapj format, plus 2 figures (one color), accepted to the Astrophysical Journa

    Broad band sound from wind turbine generators

    Get PDF
    Brief descriptions are given of the various types of large wind turbines and their sound characteristics. Candidate sources of broadband sound are identified and are rank ordered for a large upwind configuration wind turbine generator for which data are available. The rotor is noted to be the main source of broadband sound which arises from inflow turbulence and from the interactions of the turbulent boundary layer on the blade with its trailing edge. Sound is radiated about equally in all directions but the refraction effects of the wind produce an elongated contour pattern in the downwind direction

    Gutzwiller variational theory for the Hubbard model with attractive interaction

    Full text link
    We investigate the electronic and superconducting properties of a negative-U Hubbard model. For this purpose we evaluate a recently introduced variational theory based on Gutzwiller-correlated BCS wave functions. We find significant differences between our approach and standard BCS theory, especially for the superconducting gap. For small values of U|U|, we derive analytical expressions for the order parameter and the superconducting gap which we compare to exact results from perturbation theory.Comment: 10 pages, 2 figure

    Compressibility of the Two-Dimensional infinite-U Hubbard Model

    Full text link
    We study the interactions between the coherent quasiparticles and the incoherent Mott-Hubbard excitations and their effects on the low energy properties in the U=U=\infty Hubbard model. Within the framework of a systematic large-N expansion, these effects first occur in the next to leading order in 1/N. We calculate the scattering phase shift and the free energy, and determine the quasiparticle weight Z, mass renormalization, and the compressibility. It is found that the compressibility is strongly renormalized and diverges at a critical doping δc=0.07±0.01\delta_c=0.07\pm0.01. We discuss the nature of this zero-temperature phase transition and its connection to phase separation and superconductivity.Comment: 4 pages, 3 eps figures, final version to appear in Phys. Rev. Let

    Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation

    Full text link
    The charge and spin dynamics of the two-dimensional Hubbard model in the paramagnetic phase is first studied by means of the two-pole approximation within the framework of the Composite Operator Method. The fully self-consistent scheme requires: no decoupling, the fulfillment of both Pauli principle and hydrodynamics constraints, the simultaneous solution of fermionic and bosonic sectors and a very rich momentum dependence of the response functions. The temperature and momentum dependencies, as well as the dependency on the Coulomb repulsion strength and the filling, of the calculated charge and spin susceptibilities and correlation functions are in very good agreement with the numerical calculations present in the literature

    Tone-activated, remote, alert communication system

    Get PDF
    Pocket sized transmitter, frequency modulated by crystal derived tones, with integral loop antenna provides police with easy operating alert signal communicator which uses patrol car radio to relay signal. Communication channels are time shared by several patrol units

    Mott-Hubbard insulators for systems with orbital degeneracy

    Full text link
    We study how the electron hopping reduces the Mott-Hubbard band gap in the limit of a large Coulomb interaction U and as a function of the orbital degeneracy N. The results support the conclusion that the hopping contribution grows as roughly \sqrt{N}W, where W is the one-particle band width, but in certain models a crossover to a \sim NW behavior is found for a sufficiently large N.Comment: 7 pages, revtex, 6 figures more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method

    Full text link
    We have investigated the antiferromagnetic phase of the 2D, the 3D and the extended Hubbard models on a bipartite cubic lattice by means of the Composite Operator Method within a two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as regards the antiferromagnetic and the paramagnetic phases, has been drawn. We firstly reported, within a pole approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase. This latter is restricted to a very small region near half filling and has, in contrast to what has been found by similar approaches, a finite critical Coulomb interaction as lower bound at half filling. Finally, it is worth noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic correlations and another coming from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.
    corecore