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INTRODUCTION

There 1s a growing interest in the concept of power generation by
means of wind turbines. This has led to the development of large machines
(of megawatt size) which may te located in single or in multiple units at
many different places around the world. To date very few acoustic data
are available for large wind turbines to use as aguide in their design
and siting for acceptable environmental impact (Refs. 1-9).

The purpose of this paper is to characterize the problem of environ-
mental noise for large wind turbines. The types of wind turbines that
are of interest will be described briefly along with their sound charac-~
teristics. Sound sources will be identified and will be rank ordered
for one machine for which systematic data are available,

TYPES OF WIND TURBINE GENERATORS

Currently operating wind turbine generators which cover a wide range
of power ratings from kilowatts to megawatts can be categorized as ver-
tical axis or horizontal axis machines as indicated in Figure 1. Ver-
tical axis machines include the Darrieus and Gyromill types. They typi-
cally have 2-4 blades which rotate about a vertical axis and they are
nondirectional with respect to the wind. The largest of this type are
Darrieus machines having a rating of about 0.5 MW.

Horizontal axis machines are now operational in the 2 MW range.

They have 2 or 3 blades, and operational speeds in the range 18-30 rpm.
They are referred to as either upwind or downwind machines depending on
the location of the rotor with respect to the supporting tower. They

operate most efficiently when aligned with the wind vector.



A schematic illustration of a wind turbine sound spectrum is given
in Figure 2. The discrete frequency components associated with both
steady and fluctuating blade loads, are at multiples of the blade passage
frequency and hence occur at very low frequencies. The broad band sound
compounents on the other hand are assoctated with the turbulent inflow,
the blade boundary layers, and waka turbulemnce. They arise from a number
of different aero&yna-ic phenomena and consist of a wide range of fre-
quencies from subaudible up into the normal range of hearing.

The presence of intense discrete frequency components has been 1li-
mited to those horizontal axis configurations with downwind rotors and
for vhich there is the possibility of strong rotor-tower wake interac-
tions. Discrete frequency sounds also arise from the torque tube-blade
interactions of vertical axis machines. Broadband sound, however, is of
concern for all types of machines. The remainder of this paper will
focus on the broadband components.

SOURCES Or BROAD BAND SOUND

There are a number of posaible sources of broadband sound due to
the interactions of rotating blades with the surrounding air. Some of
these which could be important for the ranges of geometry and operating
conditions of wind turbine generators are listed in Figure 3. Note that
they are categorized as being associated with the turbulent inflow, the
airfoil itself or the wakes,

Included are such phenomena as direct radiation from the aerodynamic
vakes of the blades and the turbulent boundary lavers on their surfaces,
vortex shedding, separated flows due to localized stalling and the in-~

teractions of the aerodynamic flow with surface roughness, protuberances,



cavities and slots. As will be illustrated subsequently, measurements
on a large horizontal axis upwind machine suggested that its two main
noise sourc2s are inflow turbulence and turbuwlent boundary layer inter-
actions with the blade trailing edges. None of the other sources seemed
to be important.
ACOUSTIC MEASUREMENTS ON MOD-2 MACHINE
Test Site

The oppcrtunity was taken to make a sys:ematic series of sound mea-
- surements on the DOE-NASA-BPA MOD-2 machine shown in the inset photograph
of Figure 4. It is a two blade, horizontal axis, upwind machine which
has a 300 foot: diameter rotor and an rpm of 18. It is located in the
Goodnoe Hills region on the north rim of the Columbia River Gorge in the
State of Washington. Examples of acoustic daca from Ref. 1 are shown in
Figures 5, 6 and 7.

Example Sound Spectra

Measurements in both the near and far acoustic fields indicated
characteristic spectrum shapes such as those in the example plot of
Figure 5. Note that two broadband sound peaks are present and these re-
sult from different aerodynamic flow phenomena on the blades, as indicated
by the airfoil sketch.,

Available evidence suggests that the low frequency peak is associa-
ted with inflow turbulence. Random velocity fluctuations cause effective
angle of attack changes which in turn result in unsteady lift and drag
loads and ass-ciated sound radiation. These sound components are mea-
surable and will propagate with very little atmospheric attenuation, but

are not readily observable above the background noise.



On the othsi hsud, the higher frequency peak is believed to result
from the interactions of the turbulent boundary layers on the airfoil sur-
faces with the airfoil trailing edge. These sound components seem to
dominate the spectra near the machine, and are in a frequency range where
the ear is sensitive and the background noise level is low. Detection
distarces at the operational site where the background A-scale noise level
was about 30 dB were about 1400 m (4600 ft) upwind and in excess of 2100 m
(6900 ft) downwind.

Effects of Tistance

Figure 6 contains a plot of measured sound pressure levels as @ func-
tion of distance for comparison with predictions. For information an
example instantaneous pressure time history for one of the measuring
points is shown in the inset at the bottom of the figure. It was assumed
for the predictions that the observer was at ground level in front of the
machine and that the sound source could be represented by a concentrated
dipole at hub height. Two results can be seen. The predicted and mea-
sured values seem to be in excellent agreement except for the close-in
stations. This good agreement may be fortuitous because of the possible
wind noise contamination of some measured data. The apparently good
agreement for the predicted and measured fall off rates with increasing
distance suggests that the machine can be represented adequately as a
concentrated dipole source for far field sound prediction purposes.

Far Field Contours

Based on the data of Figure 6 plus other measurements and observa-
tions the polar diagram plots of Figure 7 have been constructed. Shown

on Figure 7 are estimated A-level contour lines for 65, 55, 45 and 35 dB



values. Shown :1so i{s the detection limit distance of about 1400 m for
the southwest quadrant, for which the A-level background noise was about
30 dB. In the downwind direction, the sound was clearly audible at a dis-
tance of about 2100 m, thus confirming the existence of an elongation of
the radiation pattern in the downwind direction. This elongation is be-
lieved due to the refraction effects of the wind rather than to any pre-
ferred directional properties of the source.

It was generally observed that the upwind (west direction) propa-
gated sound signals were relatively steady in samplitude. On the other
hand in both the south direction (crosswind) and the east direction (down-~
vind) the sound signal had a perceptible samplitude modulation at the
blade passage frequency. It has thus been suggested that at the larger
distances (particularly downwind), the sound may be detectable from only
the topmost portion of the rotor disk.

CONCLUDING REMARKS

Measurements on a large upwind configuration wind turbi'.e suggest
that the main source of sound is the rotor rather than the gears, shafts
and electrical genmeration equipment. Broadband components dominate the
sound spectrum and they are noted to arise from inflow turbulence snd
from turbulent boundary layer-trailing edge interactions. Sound is ra-
diated sbout equally in all directions but the refraction effects of the
wind produce an elongated contour pattern ipn the downwind direction.
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