175 research outputs found

    Subsonic-to-Hypersonic Aerodynamic Characteristics for a Winged, Circular-Body, Single-Stage-to-Orbit Spacecraft Configuration

    Get PDF
    Experimental aerodynamic characteristics were obtained for a generic, winged, circular-body, single-stage-to-orbit spacecraft configuration. The baseline configuration was longitudinally stable and trimmable at almost all Mach numbers from 0.15 to 10.0--with the exception occurring at low supersonic speeds. Landing speed and subsonic-to-hypersonic longitudinal stability and control appear to be within design guidelines. Lateral-directional instabilities found over the entire speed range, however, create a problem area for this configuration. Longitudinal aerodynamic predictions made utilizing the Aerodynamic Preliminary Analysis System (APAS) were in qualitative, often quantitative agreement with experimental values

    Delta Self-Consistent Field as a method to obtain potential energy surfaces of excited molecules on surfaces

    Get PDF
    We present a modification of the Δ\DeltaSCF method of calculating energies of excited states, in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Δ\DeltaSCF approximation is a density functional method closely resembling standard density functional theory (DFT), the only difference being that in Δ\DeltaSCF one or more electrons are placed in higher lying Kohn-Sham orbitals, instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground state energy within standard DFT. We extend the Δ\DeltaSCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can be estimated. The method is applied to N2_2, CO and NO adsorbed on different metallic surfaces and compared to ordinary Δ\DeltaSCF without our modification, spatially constrained DFT and inverse-photoemission spectroscopy (IPES) measurements. This comparison shows that the modified Δ\DeltaSCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2_2 adsorbed on ruthenium (0001) we map out a 2-dimensional part of the potential energy surfaces in the ground state and the 2π\pi-resonance. Finally we compare the Δ\DeltaSCF approach on gas-phase N2_2 and CO, to higher accuracy methods. Excitation energies are approximated with accuracy close to that of time-dependent density functional theory, and we see very good agreement in the minimum shift of the potential energy surfaces in the excited state compared to the ground state.Comment: 11 pages, 7 figure

    Energitjenester:- vejledninger og kontrakter

    Get PDF

    Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    Get PDF
    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions

    Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    Get PDF
    Understanding how sediment moves along source to sink pathways through watersheds„from hillslopes to channels and in and out of floodplains„is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600æyear time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as ñbottlenecksî that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply. ©2017. American Geophysical Union. All Rights Reserved

    The X-43A Six Degree of Freedom Monte Carlo Analysis

    Get PDF
    This report provides an overview of the Hyper-X research vehicle Monte Carlo analysis conducted with the six-degree-of-freedom simulation. The methodology and model uncertainties used for the Monte Carlo analysis are presented as permitted. In addition, the process used to select hardware validation test cases from the Monte Carlo data is described. The preflight Monte Carlo analysis indicated that the X-43A control system was robust to the preflight uncertainties and provided the Hyper-X project an important indication that the vehicle would likely be successful in accomplishing the mission objectives. The X-43A in-flight performance is compared to the preflight Monte Carlo predictions and shown to exceed the Monte Carlo bounds in several instances. Possible modeling shortfalls are presented that may account for these discrepancies. The flight control laws and guidance algorithms were robust enough as a result of the preflight Monte Carlo analysis that the unexpected in-flight performance did not have undue consequences. Modeling and Monte Carlo analysis lessons learned are presented

    Field evidence for the upwind velocity shift at the crest of low dunes

    Full text link
    Wind topographically forced by hills and sand dunes accelerates on the upwind (stoss) slopes and reduces on the downwind (lee) slopes. This secondary wind regime, however, possesses a subtle effect, reported here for the first time from field measurements of near-surface wind velocity over a low dune: the wind velocity close to the surface reaches its maximum upwind of the crest. Our field-measured data show that this upwind phase shift of velocity with respect to topography is found to be in quantitative agreement with the prediction of hydrodynamical linear analysis for turbulent flows with first order closures. This effect, together with sand transport spatial relaxation, is at the origin of the mechanisms of dune initiation, instability and growth.Comment: 13 pages, 6 figures. Version accepted for publication in Boundary-Layer Meteorolog

    Sediment Transport of Fine Sand to Fine Gravel on Transverse Bed Slopes in Rotating Annular Flume Experiments

    Get PDF
    Large‐scale morphology, in particular meander bend depth, bar dimensions, and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by secondary flows. Overestimating the transverse bed slope effect in morphodynamic models leads to flattening of the morphology, while underestimating leads to unrealistically steep bars and banks and a higher braiding index downstream. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and in practice models are calibrated on measured morphology. The objective of this research is to experimentally quantify the transverse bed slope effect for a large range of near‐bed flow conditions with varying secondary flow intensity, sediment sizes (0.17–4 mm), sediment transport mode, and bed state to test existing predictors. We conducted over 200 experiments in a rotating annular flume with counterrotating floor, which allows control of the secondary flow intensity separate from the streamwise flow velocity. Flow velocity vectors were determined with a calibrated analytical model accounting for rough bed conditions. We isolated separate effects of all important parameters on the transverse slope. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and secondary flow intensities that deviate from known predictors depending on Shields number, and strongly depend on bed state and sediment transport mode. Fitted functions are provided for application in morphodynamic modelin
    corecore