7,234 research outputs found

    Microwave attenuation and brightness temperature due to the gaseous atmosphere: A comparison of JPL and CCIR values

    Get PDF
    A sophisticated but flexible radiative transfer program designed to assure internal consistency was used to produce brightness temperature (sky noise temperature in a given direction) and gaseous attenuation curves. The curves, derived from atmospheric models, were compared and a new set was derived for a specified frequency range

    Some developments in improved methods for the measurements of the spectral irradiances of solar simulators

    Get PDF
    Measurement of spectral emission from solar simulators - photoelectric photometr

    Ultraviolet HST Observations of the Jet in M87

    Full text link
    We present new ultraviolet photometry of the jet in M87 obtained from HST WFPC2 imaging. We combine these ultraviolet data with previously published photometry for the knots of the jet in radio, optical, and X-ray, and fit three theoretical synchrotron models to the full data set. The synchrotron models consistently overpredict the flux in the ultraviolet when fit over the entire dataset. We show that if the fit is restricted to the radio through ultraviolet data, the synchrotron models can provide a good match to the data. The break frequencies of these fits are much lower than previous estimates. The implied synchrotron lifetimes for the bulk of the emitting population are longer than earlier work, but still much shorter than the estimated kinematic lifetimes of the knots. The observed X-ray flux cannot be successfully explained by the simple synchrotron models that fit the ultraviolet and optical fluxes. We discuss the possible implications of these results for the physical properties of the M87 jet. We also observe increased flux for the HST-1 knot that is consistent with previous results for flaring. This observation fills in a significant gap in the time coverage early in the history of the flare, and therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed lightcurve and caption in Figure

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm−210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the eta Chamaeleontis cluster

    Get PDF
    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are, therefore, of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spectra to complete the CS disk census for the late-type members of the ~8 Myr-old eta Chamaeleontis star cluster. Of the 15 K- and M-type members, eight show excess emission. We find that the presence of a CS disk is anti-correlated with binarity, with all but one disk associated with single stars. With nine single stars in total, about 80% retain a CS disk. Of the six known or suspected close binaries the only CS disk is associated with the primary of RECX 9. No circumbinary disks have been detected. We also find that stars with disks are slow rotators with surface values of specific angular momentum j = 2-15 j_sun. All high specific angular momentum systems with j = 20-30 j_sun are confined to the primary stars of binaries. This provides novel empirical evidence for rotational disk locking and again demonstrates the much shorter disk lifetimes in close binary systems compared to single star systems. We estimate the characteristic mean disk dissipation timescale to be ~5 Myr and ~9 Myr for the binary and single star systems, respectively.Comment: Accepted by ApJ

    Properties of Extruded PS-212 Type Self-Lubricating Materials

    Get PDF
    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent

    Harnessing oscillatory fluid behaviour to improve debris wash-out in ureteroscopy

    Get PDF
    In ureteroscopy, a common method for kidney stone removal, a ureteroscope is inserted into the patient’s kidney, through which working tools such as a laser are inserted. During the procedure, the renal space proximal to the scope tip is irrigated with fluid in order to clear stone particles and debris. However, even with continual fluid flow into and out of the kidney, stone dust may become trapped in vortical structures, significantly impairing the operating clinician’s field of view. Key to overcoming this challenge is a clear understanding of the flow patterns within an irrigated kidney calyx, and a modelling framework that enables to interrogate how different flow conditions impact on the wash-out time of debris. Previous theoretical studies have uncovered the interplay between fluid structure, in particular the presence of vortical regions, and dust washout, but only in a regime of steady inlet flow conditions. In this paper we model a kidney calyx in an idealised 2D cavity geometry, in which we investigate the presence and potential disturbance of vortical structures due to an oscillatory inlet condition, and the impact on dust washout, modelled as a passive tracer in the flow. By varying the flow amplitude and frequency at the inlet, we uncover a delicate relationship with vortex size and vortex disturbance, and we demonstrate the potential for significant decrease in wash-out time with low-frequency high-amplitude conditions. We then compare this result to the commonly used practice of flushing, a discrete and temporary increase in flow, and we also demonstrate the qualitative robustness of our findings to changes in cavity geometry
    • …
    corecore