21,598 research outputs found

    Wind tunnel blockage tests at Mach 5 of vacuum duct models for two sound radiation shields

    Get PDF
    Two sound shield models with dummy vacuum exhaust ducts were tested in a Mach 5 pilot quiet tunnel. The first model simulates a new sound shield of 3 in. (7.62 cm) inside diameter and the second model is a shield of 4 in. (10.16 cm) inside diameter. The dummy vacuum exhaust ducts were attached to the external housing of the models. The flow in the first model, which had a by pass mass flow ratio of about 0.6, could not be started except at the two highest test Reynolds numbers where only the central core flow region was started. The flow in the second model with a mass ratio of approximately 0.3 was fully started except at the lowest unit Reynolds number where some unsteadiness and partial flow separation at the wall was observed. Since the external housing and dummy vacuum ducts were the same for both models, these results indicate that the ratio of by pass mass flow to total mass flow for a wind tunnel sound shield of this particular design must be less than about 0.3. Hence, a lower limit is imposed on the inlet diameter of the sound shield in relation to the exit diameter of the wind tunnel nozzle. This lower limit on the inlet diameter may possibly be reduced by improvements in streamlining of the external housing and ducts, by reductions in blockage area, or by the use of external ducting shrouds

    Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer

    Get PDF
    One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented

    Design and preliminary test results at Mach 5 of an axisymmetric slotted sound shield

    Get PDF
    The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown

    The Impact of a Continuing Energy Crisis: Changing Attitudes and Behaviors Regarding Thermostat Setback

    Get PDF
    A sample of Akron, Ohio SMSA households are utilized to examine thermostat setback as an energy conservation strategy. Socio-economic differences between adopting households are evaluated using discriminant analysis. The results constitute the bases on which our recommendations for future increased use of the thermostat setback strategy are made

    The impact of pneumolysin on the macrophage response to Streptococcus pneumoniae is strain-dependent

    Get PDF
    Streptococcus pneumoniae is the world's leading cause of pneumonia, bacteremia, meningitis and otitis media. A major pneumococcal virulence factor is the cholesterol-dependent cytolysin, which has the defining property of forming pores in cholesterol-containing membranes. In recent times a clinically significant and internationally successful serotype 1 ST306 clone has been found to express a non-cytolytic variant of Ply (Ply306). However, while the pneumococcus is a naturally transformable organism, strains of the ST306 clonal group have to date been virtually impossible to transform, severely restricting efforts to understand the role of non-cytolytic Ply in the success of this clone. In this study isogenic Ply mutants were constructed in the D39 background and for the first time in the ST306 background (A0229467) to enable direct comparisons between Ply variants for their impact on the immune response in a macrophage-like cell line. Strains that expressed cytolytic Ply were found to induce a significant increase in IL-1β release from macrophage-like cells compared to the non-cytolytic and Ply-deficient strains in a background-independent manner, confirming the requirement for pore formation in the Ply-dependent activation of the NLRP3 inflammasome. However, cytolytic activity in the D39 background was found to induce increased expression of the genes encoding GM-CSF (CSF2), p19 subunit of IL-23 (IL23A) and IFNβ (IFNB1) compared to non-cytolytic and Ply-deficient D39 mutants, but had no effect in the A0229467 background. The impact of Ply on the immune response to the pneumococcus is highly dependent on the strain background, thus emphasising the importance of the interaction between specific virulence factors and other components of the genetic background of this organism

    Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report

    Get PDF
    Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency

    The five-minute oscillations: What's left to be done

    Get PDF
    Current observational methods for studying these oscillations at large horizontal wavenumbers are discussed in detail and several two dimensional power spectra obtained with a CID camera on the main spectrograph of the McMath telescope at Kitt Peak National Observatory are described. The best-resolved observations of the p-mode obtained at chromospheric elevations are also presented. Recent progress in studies of the p-modes at low wavenumbers with full-disk velocity detection schemes is summarized. These full-disk observations of radial and low-degree non-radial modes were shown to place severe constraints on the theoretical calculation of solar interior structure. Progress in making fully-consistent solar models which fit both the high- and low-wave number observations is described. Finally, the observational and theoretical improvements that are necessary for further progress in solar seismology are summarized
    corecore