1,116 research outputs found

    Lagrangian planetary equations in Schwarzschild space--time

    Get PDF
    We have developed a method to study the effects of a perturbation to the motion of a test point--like object in a Schwarzschild spacetime. Such a method is the extension of the Lagrangian planetary equations of classical celestial mechanics into the framework of the full theory of general relativity. The method provides a natural approach to account for relativistic effects in the unperturbed problem in an exact way.Comment: 7 pages; revtex; accepted for publication in Class. Quantum Gra

    Parity Effects in Eigenvalue Correlators, Parametric and Crossover Correlators in Random Matrix Models: Application to Mesoscopic systems

    Full text link
    This paper summarizes some work I've been doing on eigenvalue correlators of Random Matrix Models which show some interesting behaviour. First we consider matrix models with gaps in there spectrum or density of eigenvalues. The density-density correlators of these models depend on whether N, where N is the size of the matrix, takes even or odd values. The fact that this dependence persists in the large N thermodynamic limit is an unusual property and may have consequences in the study of one electron effects in mesoscopic systems. Secondly, we study the parametric and cross correlators of the Harish Chandra-Itzykson-Zuber matrix model. The analytic expressions determine how the correlators change as a parameter (e.g. the strength of a perturbation in the hamiltonian of the chaotic system or external magnetic field on a sample of material) is varied. The results are relevant for the conductance fluctuations in disordered mesoscopic systems.Comment: 12 pages, Latex, 2 Figure

    Generalization of the Fortuin-Kasteleyn transformation and its application to quantum spin simulations,

    Full text link
    We generalize the Fortuin-Kasteleyn (FK) cluster representation of the partition function of the Ising model to represent the partition function of quantum spin models with an arbitrary spin magnitude in arbitrary dimensions. This generalized representation enables us to develop a new cluster algorithm for the simulation of quantum spin systems by the worldline Monte Carlo method. Because the Swendsen-Wang algorithm is based on the FK representation, the new cluster algorithm naturally includes it as a special case. As well as the general description of the new representation, we present an illustration of our new algorithm for some special interesting cases: the Ising model, the antiferromagnetic Heisenberg model with S=1S=1, and a general Heisenberg model. The new algorithm is applicable to models with any range of the exchange interaction, any lattice geometry, and any dimensions.Comment: 46 pages, 10 figures, to appear in J.Stat.Phy

    Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    Get PDF
    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.Comment: 58 page

    Post-Newtonian Lagrangian planetary equations

    Get PDF
    We present a method to study the time variation of the orbital parameters of a Post-Keplerian binary system undergoing a generic external perturbation. The method is the relativistic extension of the planetary Lagrangian equations. The theory only assumes the smallness of the external perturbation while relativistic effects are already included in the unperturbed problem. This is the major advantage of this novel approach over classical Lagrangian methods.Comment: 8 pages; revtex; accepted for publication in Phys. Rev.

    Phase imaging systems for measurement of plasma density contours

    Get PDF
    During recent years, there has been considerable interest in obtaining spatially localized time resolved density measurements in fusion plasmas. However, the study of such phenomena requires many channels of information on a scale much finer than available with current discrete chordal view multichannel interferometers. These problems can be overcome by imaging an expanded probe beam occupying the entire plasma port crosssection onto a linear detector array [1], thereby significantly reducing the number of optical components and hence the cost and complexity of the system compared with a comparable discrete chord multichannel interferometer. Other more fundamental advantages of the imaging technique include compensation for phase errors due to plasma refraction, whilst the diffraction limited system resolution (typically ≃ 1cm for FIR probe wavelengths) allows the use of many detector channels for high spatial sampling rates. and hence accurate reconstruction of the density profiles

    Crossover from Isotropic to Directed Percolation

    Full text link
    Percolation clusters are probably the simplest example for scale--invariant structures which either are governed by isotropic scaling--laws (``self--similarity'') or --- as in the case of directed percolation --- may display anisotropic scaling behavior (``self--affinity''). Taking advantage of the fact that both isotropic and directed bond percolation (with one preferred direction) may be mapped onto corresponding variants of (Reggeon) field theory, we discuss the crossover between self--similar and self--affine scaling. This has been a long--standing and yet unsolved problem because it is accompanied by different upper critical dimensions: dcI=6d_c^{\rm I} = 6 for isotropic, and dcD=5d_c^{\rm D} = 5 for directed percolation, respectively. Using a generalized subtraction scheme we show that this crossover may nevertheless be treated consistently within the framework of renormalization group theory. We identify the corresponding crossover exponent, and calculate effective exponents for different length scales and the pair correlation function to one--loop order. Thus we are able to predict at which characteristic anisotropy scale the crossover should occur. The results are subject to direct tests by both computer simulations and experiment. We emphasize the broad range of applicability of the proposed method.Comment: 19 pages, written in RevTeX, 12 figures available upon request (from [email protected] or [email protected]), EF/UCT--94/2, to be published in Phys. Rev. E (May 1994

    The AdS/QCD Correspondence: Still Undelivered

    Full text link
    We consider the particle spectrum and event shapes in large N gauge theories in different regimes of the short-distance 't Hooft coupling, lambda. The mesons in the small lambda limit should have a Regge spectrum in order to agree with perturbation theory, while generically the large lambda theories with gravity duals produce spectra reminiscent of KK modes. We argue that these KK-like states are qualitatively different from QCD modes: they are deeply bound states which are sensitive to short distance interactions rather than the flux tube-like states expected in asymptotically free, confining gauge theories. In addition, we also find that the characteristic event shapes for the large lambda theories with gravity duals are close to spherical, very different from QCD-like (small lambda, small N) and Nambu-Goto-like (small lambda, large N) theories which have jets. This observation is in agreement with the conjecture of Strassler on event shapes in large 't Hooft coupling theories, which was recently proved by Hofman and Maldacena for the conformal case. This conclusion does not change even when considering soft-wall backgrounds in the gravity dual. The picture that emerges is the following: theories with small and large lambda are qualitatively different, while theories with small and large N are qualitatively similar. Thus it seems that it is the relative smallness of the 't Hooft coupling in QCD that prevents a reliable AdS/QCD correspondence from emerging, and that reproducing characteristic QCD-like behavior will require genuine stringy dynamics to be incorporated into any putative dual theory.Comment: 32 pages, 15 figures; references added, minor changes, history clarifie

    Boson--fermion bound states in two dimensional QCD

    Get PDF
    We derive the boson--fermion bound state equation in a two dimensional gauge theory in the large--\nc limit. We analyze the properties of this equation and in particular, find that the mass trajectory is linear with respect to the bound state level for the higher mass states.Comment: 5pp, 2 figs (as a separate file), TIT/HEP-23
    • 

    corecore