101 research outputs found

    Noncommutative Dipole Field Theories And Unitarity

    Full text link
    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.Comment: typos corrected, more details added in Sec 5, version to appear in JHE

    A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation

    Get PDF
    Like Bcl-2, Mcl-1 is an important survival factor for many cancers, its expression contributing to chemoresistance and disease relapse. However, unlike other prosurvival Bcl-2–like proteins, Mcl-1 stability is acutely regulated. For example, the Bcl-2 homology 3 (BH3)–only protein Noxa, which preferentially binds to Mcl-1, also targets it for proteasomal degradation. In this paper, we describe the discovery and characterization of a novel BH3-like ligand derived from Bim, BimS2A, which is highly selective for Mcl-1. Unlike Noxa, BimS2A is unable to trigger Mcl-1 degradation, yet, like Noxa, BimS2A promotes cell killing only when Bcl-xL is absent or neutralized. Furthermore, killing by endogenous Bim is not associated with Mcl-1 degradation. Thus, functional inactivation of Mcl-1 does not always require its elimination. Rather, it can be efficiently antagonized by a BH3-like ligand tightly engaging its binding groove, which is confirmed here with a structural study. Our data have important implications for the discovery of compounds that might kill cells whose survival depends on Mcl-1

    Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study

    Get PDF
    The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America

    Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis

    Get PDF
    SummaryIn stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2–α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other’s surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis

    The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition.

    Get PDF
    Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity

    Enhancons, Fuzzy Spheres and Multi-Monopoles

    Get PDF
    We study the `enhancon', a spherical hypersurface apparently made of D-branes, which arises in string theory studies of large N SU(N) pure gauge theories with eight supercharges. When the gauge theory is 2+1 dimensional, the enhancon is an S^2. A relation to charge N BPS multi-monopoles is exploited to uncover many of its detailed properties. It is simply a spherical slice through an Atiyah-Hitchin-like submanifold of the charge NN BPS monopole moduli space. In the form of Nahm data, it is built from the N dimensional irreducible representation of SU(2). In this sense the enhancon is a non-commutative sphere, reminiscent of the spherical `dielectric' branes of Myers.Comment: 25 pages, latex, 3 primary figures, psfig (v2: Omission of references to important early work on multi-monopoles is fixed. Note added on possible relations to certain other recent work on large N, monopoles, and non-commutativity. A few typos fixed.) (v3: Extensive revision. Statements about role of Atiyah-Hitchin manifold and instanton corrections refined. Speculation about location of Higgs zeros removed. Discussion improved in many places.

    M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory

    Get PDF
    A self-contained review is given of the matrix model of M-theory. The introductory part of the review is intended to be accessible to the general reader. M-theory is an eleven-dimensional quantum theory of gravity which is believed to underlie all superstring theories. This is the only candidate at present for a theory of fundamental physics which reconciles gravity and quantum field theory in a potentially realistic fashion. Evidence for the existence of M-theory is still only circumstantial---no complete background-independent formulation of the theory yet exists. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, the theory appeared in a different guise as the discrete light-cone quantization of M-theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory which reduces to a supersymmetric theory of gravity at low energies. Although the fundamental degrees of freedom of matrix theory are essentially pointlike, it is shown that higher-dimensional fluctuating objects (branes) arise through the nonabelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed.Comment: 56 pages, 3 figures, LaTeX, revtex style; v2: references adde

    USp(2k) Matrix Model: Nonperturbative Approach to Orientifolds

    Get PDF
    We discuss theoretical implications of the large k USp(2k) matrix model in zero dimension. The model appears as the matrix model of type IIB superstrings on a large T6/Z2T^{6}/Z^{2} orientifold via the matrix twist operation. In the small volume limit, the model behaves four dimensional and its T dual is six-dimensional worldvolume theory of type I superstrings in ten spacetime dimensions. Several theoretical considerations including the analysis on planar diagrams, the commutativity of the projectors with supersymmetries and the cancellation of gauge anomalies are given, providing us with the rationales for the choice of the Lie algebra and the field content. A few classical solutions are constructed which correspond to Dirichlet p-branes and some fluctuations are evaluated. The particular scaling limit with matrix T duality transformation is discussed which derives the F theory compactification on an elliptic fibered K3.Comment: LaTeX, 29 pages, 3 figures. PostScript problems are fixe

    Teleparallel Gravity and Dimensional Reductions of Noncommutative Gauge Theory

    Full text link
    We study dimensional reductions of noncommutative electrodynamics on flat space which lead to gauge theories of gravitation. For a general class of such reductions, we show that the noncommutative gauge fields naturally yield a Weitzenbock geometry on spacetime and that the induced diffeomorphism invariant field theory can be made equivalent to a teleparallel formulation of gravity which macroscopically describes general relativity. The Planck length is determined in this setting by the Yang-Mills coupling constant and the noncommutativity scale. The effective field theory can also contain higher-curvature and non-local terms which are characteristic of string theory. Some applications to D-brane dynamics and generalizations to include the coupling of ordinary Yang-Mills theory to gravity are also described.Comment: 31 pages LaTeX; References adde

    Super Yang-Mills Theory as a Random Matrix Model

    Full text link
    We generalize the Gervais-Neveu gauge to four-dimensional N=1 superspace. The model describes an N=2 super Yang-Mills theory. All chiral superfields (N=2 matter and ghost multiplets) exactly cancel to all loops. The remaining hermitian scalar superfield (matrix) has a renormalizable massive propagator and simplified vertices. These properties are associated with N=1 supergraphs describing a superstring theory on a random lattice world-sheet. We also consider all possible finite matrix models, and find they have a universal large-color limit. These could describe gravitational strings if the matrix-model coupling is fixed to unity, for exact electric-magnetic self-duality.Comment: 15 pg., uuencoded compressed postscript file (.ps.Z.uu), other formats (.dvi, .ps, .ps.Z, 8-bit .tex) available at http://insti.physics.sunysb.edu/~siegel/preprints/ or at ftp://max.physics.sunysb.edu/preprints/siege
    • 

    corecore