2,514 research outputs found

    Beyond the random phase approximation in the Singwi-Sj\"olander theory of the half-filled Landau level

    Full text link
    We study the ν=1/2\nu=1/2 Chern-Simons system and consider a self-consistent field theory of the Singwi-Sj\"olander type which goes beyond the random phase approximation (RPA). By considering the Heisenberg equation of motion for the longitudinal momentum operator, we are able to show that the zero-frequency density-density response function vanishes linearly in long wavelength limit independent of any approximation. From this analysis, we derive a consistency condition for a decoupling of the equal time density-density and density-momentum correlation functions. By using the Heisenberg equation of motion of the Wigner distribution function with a decoupling of the correlation functions which respects this consistency condition, we calculate the response functions of the ν=1/2\nu=1/2 system. In our scheme, we get a density-density response function which vanishes linearly in the Coulomb case for zero-frequency in the long wavelength limit. Furthermore, we derive the compressibility, and the Landau energy as well as the Coulomb energy. These energies are in better agreement to numerical and exact results, respectively, than the energies calculated in the RPA.Comment: 9 Revtex pages, 4 eps figures, typos correcte

    Generation of femtosecond light pulses in the near infrared around λ = 850 nm

    Get PDF
    Femtosecond light pulses tunable between 840 nm and 880 nm are generated in a synchronously pumped ring dye laser. The laser emits nearly bandwidth-limited pulses (Δv tp = 0.45) with pulse durations down to 65 fs. At a pumping power of 450 mW of a mode-locked Ar-ion laser (λ = 514 nm) the infrared femtosecond dye laser has an output of up to 15 mW

    Modification of the rho meson detected by low-mass electron-positron pairs in central Pb-Au collisions at 158 A GeV/c

    Get PDF
    We present a measurement of e+ee^+e^- pair production in central Pb-Au collisions at 158AA GeV/cc. As reported earlier, a significant excess of the e+ee^+e^- pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the ρ\rho spectral function over a density-dependent shift of the ρ\rho pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to in-medium modifications of the ρ\rho-meson in the hot fireball at SPS energy.Comment: Revised versio

    New Results on Pb-Au Collisions at 40 AGeV from the CERES/NA45 Experiment

    Get PDF
    In 1999 the CERES/NA45 ran at the CERN SPS with a beam energy of 40 GeV/nucleon. The data set comprises about 8.7 millions Pb-Au events with a trigger selection corresponding to approximately the most central 30% of the geometrical cross section. Results on low-mass electron pair analysis are presented. The upgrade of the experimental setup with the radial drift TPC has allowed to enhance hadron physics capabilities of the experiment. New results on hadron spectra (including Lambda) and flow are presented.Comment: Talk at the International Nuclear Physics Conference INPC2001, Berkeley, CA, July 29th - August 3rd 200

    Flow and non-flow event anisotropies at the SPS

    Get PDF
    A study of differential elliptic event anisotropies (v_2) of charged particles and high-pt pions in 158 AGeV/c Pb+Au collisions is presented. Results from correlations with respect to the event plane and from two-particle azimuthal correlations are compared. The latter give systematically higher v_2 values at pt>1.2GeV/c providing possibly an evidence of a non-flow semihard component.Comment: 4 pages, 6 figures, Quark Matter 2002, Nantes, to appear in Nucl. Phys.
    corecore