43,709 research outputs found

    Collective atomic recoil motion in short-pulse multi-matter-optical wave mixing

    Full text link
    An analytical perturbation theory of short-pulse, matter-wave superradiant scatterings is presented. We show that Bragg resonant enhancement is incapacitated and both positive and negative order scatterings contribute equally. We further show that propagation gain is small and scattering events primarily occur at the end of the condensate where the generated field has maximum strength, thereby explaining the apparent ``asymmetry" in the scattered components with respect to the condensate center. In addition, the generated field travels near the speed of light in a vacuum, resulting in significant spontaneous emission when the one-photon detuning is not sufficiently large. Finally, we show that when the excitation rate increases, the generated-field front-edge-steepening and peak forward-shifting effects are due to depletion of the ground state matter wave.Comment: This manuscript was submitted for publication in Nov., 200

    Computing the Least-core and Nucleolus for Threshold Cardinality Matching Games

    Full text link
    Cooperative games provide a framework for fair and stable profit allocation in multi-agent systems. \emph{Core}, \emph{least-core} and \emph{nucleolus} are such solution concepts that characterize stability of cooperation. In this paper, we study the algorithmic issues on the least-core and nucleolus of threshold cardinality matching games (TCMG). A TCMG is defined on a graph G=(V,E)G=(V,E) and a threshold TT, in which the player set is VV and the profit of a coalition SVS\subseteq V is 1 if the size of a maximum matching in G[S]G[S] meets or exceeds TT, and 0 otherwise. We first show that for a TCMG, the problems of computing least-core value, finding and verifying least-core payoff are all polynomial time solvable. We also provide a general characterization of the least core for a large class of TCMG. Next, based on Gallai-Edmonds Decomposition in matching theory, we give a concise formulation of the nucleolus for a typical case of TCMG which the threshold TT equals 11. When the threshold TT is relevant to the input size, we prove that the nucleolus can be obtained in polynomial time in bipartite graphs and graphs with a perfect matching

    Single-cluster dynamics for the random-cluster model

    Full text link
    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the qq-state Potts model to non-integer values q>1q>1. Its results for static quantities are in a satisfactory agreement with those of the existing Swendsen-Wang-Chayes-Machta (SWCM) algorithm, which involves a full cluster decomposition of random-cluster configurations. We explore the critical dynamics of this algorithm for several two-dimensional Potts and random-cluster models. For integer qq, the single-cluster algorithm can be reduced to the Wolff algorithm, for which case we find that the autocorrelation functions decay almost purely exponentially, with dynamic exponents zexp=0.07(1),0.521(7)z_{\rm exp} =0.07 (1), 0.521 (7), and 1.007(9)1.007 (9) for q=2,3q=2, 3, and 4 respectively. For non-integer qq, the dynamical behavior of the single-cluster algorithm appears to be very dissimilar to that of the SWCM algorithm. For large critical systems, the autocorrelation function displays a range of power-law behavior as a function of time. The dynamic exponents are relatively large. We provide an explanation for this peculiar dynamic behavior.Comment: 7 figures, 4 table

    Percolation in the canonical ensemble

    Full text link
    We study the bond percolation problem under the constraint that the total number of occupied bonds is fixed, so that the canonical ensemble applies. We show via an analytical approach that at criticality, the constraint can induce new finite-size corrections with exponent y_{can}=2y_t-d both in energy-like and magnetic quantities, where y_t=1/{\nu} is the thermal renormalization exponent and d is the spatial dimension. Furthermore, we find that while most of universal parameters remain unchanged, some universal amplitudes, like the excess cluster number, can be modified and become non-universal. We confirm these predictions by extensive Monte Carlo simulations of the two-dimensional percolation problem which has y_{can}=-1/2.Comment: 19 pages, 4 figures; v2 includes small edit

    Emergent O(n) Symmetry in a series of three-dimensional Potts Models

    Get PDF
    We study the q-state Potts model on the simple cubic lattice with ferromagnetic interactions in one lattice direction, and antiferromagnetic interactions in the two other directions. As the temperature T decreases, the system undergoes a second-order phase transition that fits in the universality class of the 3D O(n) model with n=q-1. This conclusion is based on the estimated critical exponents, and histograms of the order parameter. At even smaller T we find, for q=4 and 5, a first-order transition to a phase with a different type of long-range order. This long-range order dissolves at T=0, and the system effectively reduces to a disordered two-dimensional Potts antiferromagnet. These results are obtained by means of Monte Carlo simulations and finite-size scaling.Comment: 5 pages, 7 figures, accepted by Physical Review

    Hole-Doped Cuprate High Temperature Superconductors

    Full text link
    Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.Comment: Accepted for publication in Physica C, Special Issue on Superconducting Materials; 27 pages, 2 tables, 30 figure

    Probing the Melting of a Two-dimensional Quantum Wigner Crystal via its Screening Efficiency

    Full text link
    One of the most fundamental and yet elusive collective phases of an interacting electron system is the quantum Wigner crystal (WC), an ordered array of electrons expected to form when the electrons' Coulomb repulsion energy eclipses their kinetic (Fermi) energy. In low-disorder, two-dimensional (2D) electron systems, the quantum WC is known to be favored at very low temperatures (TT) and small Landau level filling factors (ν\nu), near the termination of the fractional quantum Hall states. This WC phase exhibits an insulating behavior, reflecting its pinning by the small but finite disorder potential. An experimental determination of a TT vs ν\nu phase diagram for the melting of the WC, however, has proved to be challenging. Here we use capacitance measurements to probe the 2D WC through its effective screening as a function of TT and ν\nu. We find that, as expected, the screening efficiency of the pinned WC is very poor at very low TT and improves at higher TT once the WC melts. Surprisingly, however, rather than monotonically changing with increasing TT, the screening efficiency shows a well-defined maximum at a TT which is close to the previously-reported melting temperature of the WC. Our experimental results suggest a new method to map out a TT vs ν\nu phase diagram of the magnetic-field-induced WC precisely.Comment: The formal version is published on Phys. Rev. Lett. 122, 116601 (2019
    corecore