We study the q-state Potts model on the simple cubic lattice with
ferromagnetic interactions in one lattice direction, and antiferromagnetic
interactions in the two other directions. As the temperature T decreases, the
system undergoes a second-order phase transition that fits in the universality
class of the 3D O(n) model with n=q-1. This conclusion is based on the
estimated critical exponents, and histograms of the order parameter. At even
smaller T we find, for q=4 and 5, a first-order transition to a phase with a
different type of long-range order. This long-range order dissolves at T=0, and
the system effectively reduces to a disordered two-dimensional Potts
antiferromagnet. These results are obtained by means of Monte Carlo simulations
and finite-size scaling.Comment: 5 pages, 7 figures, accepted by Physical Review