research

Single-cluster dynamics for the random-cluster model

Abstract

We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the qq-state Potts model to non-integer values q>1q>1. Its results for static quantities are in a satisfactory agreement with those of the existing Swendsen-Wang-Chayes-Machta (SWCM) algorithm, which involves a full cluster decomposition of random-cluster configurations. We explore the critical dynamics of this algorithm for several two-dimensional Potts and random-cluster models. For integer qq, the single-cluster algorithm can be reduced to the Wolff algorithm, for which case we find that the autocorrelation functions decay almost purely exponentially, with dynamic exponents zexp=0.07(1),0.521(7)z_{\rm exp} =0.07 (1), 0.521 (7), and 1.007(9)1.007 (9) for q=2,3q=2, 3, and 4 respectively. For non-integer qq, the dynamical behavior of the single-cluster algorithm appears to be very dissimilar to that of the SWCM algorithm. For large critical systems, the autocorrelation function displays a range of power-law behavior as a function of time. The dynamic exponents are relatively large. We provide an explanation for this peculiar dynamic behavior.Comment: 7 figures, 4 table

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 26/03/2019
    Last time updated on 09/03/2017