2,318 research outputs found

    Vortex Fractionalization in a Josephson Ladder

    Get PDF
    We show numerically that, in a Josephson ladder with periodic boundary conditions and subject to a suitable transverse magnetic field, a vortex excitation can spontaneously break up into two or more fractional excitations. If the ladder has N plaquettes, and N is divisible by an integer q, then in an applied transverse field of 1/q flux quanta per plaquette the ground state is a regular pattern of one fluxon every q plaquettes. When one additional fluxon is added to the ladder, it breaks up into q fractional fluxons, each carrying 1/q units of vorticity. The fractional fluxons are basically walls between different domains of the ground state of the underlying 1/q lattice. The fractional fluxons are all depinned at the same applied current and move as a unit. For certain applied fields and ladder lengths, we show that there are isolated fractional fluxons. It is shown that the fractional fluxons would produce a time-averaged voltage related in a characteristic way to the ac voltage frequency.Comment: 13 Figures. 10 page

    Effect of the chemical state of pyrolysis gases on heat-shield mass

    Get PDF
    Effect of chemical properties of pyrolysis gases on heat shield mass required for lifting reentry vehicle in typical reentry trajector

    Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge

    Get PDF
    Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis

    Static and dynamic properties of Single-Chain Magnets with sharp and broad domain walls

    Full text link
    We discuss time-quantified Monte-Carlo simulations on classical spin chains with uniaxial anisotropy in relation to static calculations. Depending on the thickness of domain walls, controlled by the relative strength of the exchange and magnetic anisotropy energy, we found two distinct regimes in which both the static and dynamic behavior are different. For broad domain walls, the interplay between localized excitations and spin waves turns out to be crucial at finite temperature. As a consequence, a different protocol should be followed in the experimental characterization of slow-relaxing spin chains with broad domain walls with respect to the usual Ising limit.Comment: 18 pages, 13 figures, to be published in Phys. Rev.

    Recent development in the design, testing and impact-damage tolerance of stiffened composite panels

    Get PDF
    Structural technology of laminated filamentary-composite stiffened-panel structures under combined inplane and lateral loadings is discussed. Attention is focused on: (1) methods for analyzing the behavior of these structures under load and for determining appropriate structural proportions for weight-efficient configurations; and (2) effects of impact damage and geometric imperfections on structural performance. Recent improvements in buckling analysis involving combined inplane compression and shear loadings and transverse shear deformations are presented. A computer code is described for proportioning or sizing laminate layers and cross-sectional dimensions, and the code is used to develop structural efficiency data for a variety of configurations, loading conditions, and constraint conditions. Experimental data on buckling of panels under inplane compression is presented. Mechanisms of impact damage initiation and propagation are described

    Excitation of the classical-limit state of an atom

    Get PDF
    We describe a technique designed to excite a classical-limit state of an atom. A picosecond electric field pulse converts a circular state into a Rydberg wave packet which is localized in all three dimensions and travels along a classical Kepler orbit with arbitrary ellipticity

    Excitation of the classical-limit state of an atom

    Get PDF
    We describe a technique designed to excite a classical-limit state of an atom. A picosecond electric field pulse converts a circular state into a Rydberg wave packet which is localized in all three dimensions and travels along a classical Kepler orbit with arbitrary ellipticity

    Kinetic Inductance of Josephson Junction Arrays: Dynamic and Equilibrium Calculations

    Full text link
    We show analytically that the inverse kinetic inductance L1L^{-1} of an overdamped junction array at low frequencies is proportional to the admittance of an inhomogeneous equivalent impedance network. The ijthij^{th} bond in this equivalent network has an inverse inductance Jijcos(θi0θj0Aij)J_{ij}\cos(\theta_i^0-\theta_j^0-A_{ij}), where JijJ_{ij} is the Josephson coupling energy of the ijthij^{th} bond, θi0\theta_i^0 is the ground-state phase of the grain ii, and AijA_{ij} is the usual magnetic phase factor. We use this theorem to calculate L1L^{-1} for square arrays as large as 180×180180\times 180. The calculated L1L^{-1} is in very good agreement with the low-temperature limit of the helicity modulus γ\gamma calculated by conventional equilibrium Monte Carlo techniques. However, the finite temperature structure of γ\gamma, as a function of magnetic field, is \underline{sharper} than the zero-temperature L1L^{-1}, which shows surprisingly weak structure. In triangular arrays, the equilibrium calculation of γ\gamma yields a series of peaks at frustrations f=12(11/N)f = \frac{1}{2}(1-1/N), where NN is an integer 2\geq 2, consistent with experiment.Comment: 14 pages + 6 postscript figures, 3.0 REVTe
    corecore