496 research outputs found
The time dimension of neural network models
This review attempts to provide an insightful perspective on the role of time within neural network models and the use of neural networks for problems involving time. The most commonly used neural network models are defined and explained giving mention to important technical issues but avoiding great detail. The relationship between recurrent and feedforward networks is emphasised, along with the distinctions in their practical and theoretical abilities. Some practical examples are discussed to illustrate the major issues concerning the application of neural networks to data with various types of temporal structure, and finally some highlights of current research on the more difficult types of problems are presented
Improvements to the Indiana Geological Survey’s Petroleum Database Management System
This poster was presented at the 2011 Annual Meeting of the American Association of Petroleum Geologists, Eastern Section, in Arlington, Virginia, in September 2011.The Indiana Geological Survey’s Petroleum Database Management System (PDMS) is a web application that provides online access to petroleum-related geological information. Since its debut in 2004, the application has been widely used by the petroleum industry, academia, government agencies, and the general public. On June 6, 2011, a significantly enhanced version of the PDMS went online. New features include a robust search menu that permits elaborate queries of more than 74,000 petroleum wells, rapid and convenient online viewing and downloading of PDF-file well reports and both PDF- and TIFF-file geophysical and other well logs, and streamlined menus for easily accessing extensive well data. An interactive, context-driven web help explains every concept or term used.
The PDMS is organized in three main sections. The Well Tables Section includes such information as well location descriptions, completion zones, logs, operators, lease names, tests, reports, hydrocarbon shows, samples, cores, geologic formations and tops, and directional survey data. The Map Viewer Section contains many user-selectable layer options for showing well locations, petroleum fields, producing formations, aerial photographs, and topographic maps. Wells shown in the Map Viewer are hyperlinked to the Well Tables for easy access to the well data. The Fields and Production Section summarizes oil, natural gas, and gas storage field data, including historical oil production volumes in both tables and charts
Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission
In high-temperature superconductivity, the process that leads to the
formation of Cooper pairs, the fundamental charge carriers in any
superconductor, remains mysterious. We use a femtosecond laser pump pulse to
perturb superconducting Bi2Sr2CaCu2O8+{\delta}, and study subsequent dynamics
using time- and angle-resolved photoemission and infrared reflectivity probes.
Gap and quasiparticle population dynamics reveal marked dependencies on both
excitation density and crystal momentum. Close to the d-wave nodes, the
superconducting gap is sensitive to the pump intensity and Cooper pairs
recombine slowly. Far from the nodes pumping affects the gap only weakly and
recombination processes are faster. These results demonstrate a new window into
the dynamical processes that govern quasiparticle recombination and gap
formation in cuprates.Comment: 22 pages, 9 figure
Can sexual selection drive female life histories? A comparative study on Galliform birds
Sexual selection is an important driver of many of the most spectacular morphological traits that we find in the animal kingdom (for example see Andersson, 1994). As such, sexual selection is most often emphasized as
Web-Based Geologic Maps, Databases, and HTML Pages for Marion County, Indiana
This poster was presented at the 2011 meeting of the Indiana Academy of Science, 126th Annual Academy Meeting, March 4-5, 2011, Indianapolis, Indiana.The Indiana Geological Survey (IGS) has created an internet map server for Marion County in central Indiana. The site provides detailed geologic information needed to address environmental issues, resource management issues, and land-use conflicts related to a growing population. Marion County is the location of Indianapolis, the state capital and largest city. The IGS anticipates that the Web site will be widely used by the general public, industry, and government entities concerned about the geology, groundwater, and other natural resources.
The Marion County Web site links an Internet map server (IMS) and database to provide a portal to the IGS‘s enterprise geodatabases, which allow users to efficiently create, manage, update, and distribute maps and data. The IMS site retrieves maps of bedrock and surficial geology completed during earlier IGS mapping projects. Hydrogeology, infrastructure, and imagery map layers are also included. Database information includes lithologic information (iLITH) compiled from water-well records stored in the Indiana Department of Natural Resources, Division of Water archives and natural gamma-ray geophysical log data, stratigraphic test hole data, and petroleum well-record data from the IGS. Currently, the following products are being prepared: (1) illustrated Web pages discussing the surficial geology, bedrock geology, and bedrock topography; (2) illustrated Web pages discussing digital elevation model terrain, gamma-ray log, iLITH, and clay thickness data sets; (3) online glossary; and (4) metadata for the map layers. The development of the Web site is funded by the IGS and the Great Lakes Geologic Mapping Coalition.Great Lakes Geologic Mapping Coalitio
Fossil Coleoptera from Florissant, Col.
p. 41-55, 4 leaves of plates : ill. ; 24 cm
Tenthredinoidea of the Florissant shales
p. 521-530 : ill. ; 24 cm.Includes bibliographical references
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
Understanding glucose transport by the bacterial phosphoenolpyruvate. Glycose phosphotransferase system on the basis of kinetic measurements in vitro.
The kinetic parameters in vitro of the components of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) in enteric bacteria were collected. To address the issue of whether the behavior in vivo of the PTS can be understood in terms of these enzyme kinetics, a detailed kinetic model was constructed. Each overall phosphotransfer reaction was separated into two elementary reactions, the first entailing association of the phosphoryl donor and acceptor into a complex and the second entailing dissociation of the complex into dephosphorylated donor and phosphorylated acceptor. Literature data on the K(m) values and association constants of PTS proteins for their substrates, as well as equilibrium and rate constants for the overall phosphotransfer reactions, were related to the rate constants of the elementary steps in a set of equations; the rate constants could be calculated by solving these equations simultaneously. No kinetic parameters were fitted. As calculated by the model, the kinetic parameter values in vitro could describe experimental results in vivo when varying each of the PTS protein concentrations individually while keeping the other protein concentrations constant. Using the same kinetic constants, but adjusting the protein concentrations in the model to those present in cell-free extracts, the model could reproduce experiments in vitro analyzing the dependence of the flux on the total PTS protein concentration. For modeling conditions in vivo it was crucial that the PTS protein concentrations be implemented at their high in vivo values. The model suggests a new interpretation of results hitherto not understood; in vivo, the major fraction of the PTS proteins may exist as complexes with other PTS proteins or boundary metabolites, whereas in vitro, the fraction of complexed proteins is much smaller
Fossil localities in Florissant, Col.
p. 127-132 : ill. ; 24 cm."The members of the expedition were Dr. W.M. Wheeler, Mr. S.A. Rohwer, and Mr. and Mrs. Cockerell"--P. 132
- …