47 research outputs found

    Random walk of magnetic field lines for different values of the energy-range spectral index

    Full text link
    An analytical nonlinear description of field-line wandering in partially statistically magnetic systems was proposed recently [A. Shalchi, I. Kourakis, Astronomy and Astrophysics, 470, 405 (2007)]. In this article we investigate the influence of the wave-spectrum in the energy-range onto field line random walk by applying this formulation. It is demonstrated that in all considered cases we clearly obtain a superdiffusive behaviour of the field-lines. If the energy-range spectral index exceeds unity a free-streaming behaviour of the field-lines can be found for all relevant length-scales of turbulence. Since the superdiffusive results obtained for the slab model are exact, it seems that superdiffusion is the normal behavior of field line wandering.Comment: Submitted to Physics of Plasmas; 13 pages, no figure

    Pattern Formation in Interface Depinning and Other Models: Erratically Moving Spatial Structures

    Full text link
    We study erratically moving spatial structures that are found in a driven interface in a random medium at the depinning threshold. We introduce a bond-disordered variant of the Sneppen model and study the effect of extremal dynamics on the morphology of the interface. We find evidence for the formation of a structure which moves along with the growth site. The time average of the structure, which is defined with respect to the active spot of growth, defines an activity-centered pattern. Extensive Monte Carlo simulations show that the pattern has a tail which decays slowly, as a power law. To understand this sort of pattern formation, we write down an approximate integral equation involving the local interface dynamics and long-ranged jumps of the growth spot. We clarify the nature of the approximation by considering a model for which the integral equation is exactly derivable from an extended master equation. Improvements to the equation are considered by adding a second coupled equation which provides a self-consistent description. The pattern, which defines a one-point correlation function, is shown to have a strong effect on ordinary space-fixed two-point correlation functions. Finally we present evidence that this sort of pattern formation is not confined to the interface problem, but is generic to situations in which the activity at succesive time steps is correlated, as for instance in several other extremal models. We present numerical results for activity-centered patterns in the Bak-Sneppen model of evolution and the Zaitsev model of low-temperature creep.Comment: RevTeX, 18 pages, 19 eps-figures, To appear in Phys. Rev.

    Reaction-diffusion fronts under stochastic advection

    Get PDF
    We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations

    UDP-GlcNAc 2-Epimerase/ManNAc Kinase (GNE): A Master Regulator of Sialic Acid Synthesis

    No full text
    corecore