21 research outputs found

    Validating satellite derived and modelled sea-ice drift in the Laptev Sea with in situ measurements from the winter of 2007/2008

    Get PDF
    A correct representation of the ice movement in an Arctic sea-ice-ocean coupled model is essential for a realistic sea-ice and ocean simulation. The aim of this study is to validate the observational and simulated sea-ice drift for the Laptev Sea Shelf region with in situ measurements from the winter of 2007/08. Several satellite remote-sensing data sets are first compared to mooring measurements and afterwards to the sea-ice drift simulated by the coupled sea-ice-ocean model. The different satellite products have a correlation to the in situ data ranging from 0.56 to 0.86. The correlations of sea-ice direction or individual drift vector components between the in situ data and the observations are high, about 0.8. Similar correlations are achieved by the model simulations. The sea-ice drift speed derived from the model and from some satellite products have only moderate correlations of about 0.6 to the in situ record. The standard errors for the satellite products and model simulations drift components are similar to the errors of the satellite products in the central Arctic and are about 0.03 m/s. The fast-ice parameterization implementation in the model was also successfully tested for its influence on the sea-ice drift. In contrast to the satellite products, the model drift simulations have a full temporal and spatial coverage and results are reliable enough to use as sea-ice drift estimates on the Laptev Sea Shelf

    Fast EVP Solutions in a High-Resolution Sea Ice Model

    No full text
    Sea ice dynamics determine the drift and deformation of sea ice. Nonlinear physics, usually expressed in a viscous-plastic rheology, makes the sea ice momentum equations notoriously difficult to solve. At increasing sea ice model resolution the nonlinearities become stronger as linear kinematic features (leads) appear in the solutions. Even the standard elastic-viscous-plastic (EVP) solver for sea ice dynamics, which was introduced for computational efficiency, becomes computationally very expensive, when accurate solutions are required, because the numerical stability requires very short, and hence more, subcycling time steps at high resolution. Simple modifications to the EVP solver have been shown to remove the influence of the number of subcycles on the numerical stability. At low resolution appropriate solutions can be obtained with only partial convergence based on a significantly reduced number of subcycles as long as the numerical procedure is kept stable. This previous result is extended to high resolution where linear kinematic features start to appear. The computational cost can be strongly reduced in Arctic Ocean simulations with a grid spacing of 4.5 km by using modified and adaptive EVP versions because fewer subcycles are required to simulate sea ice fields with the same characteristics as with the standard EVP

    References

    No full text
    corecore