2,487 research outputs found

    The RF power coupler development programme at LAL-Orsay and DESY-Hamburg for TESLA and the European X-FEL

    No full text
    In the context of a collaboration between LAL (Orsay) and DESY (Hamburg) a programme of development and tests of proto-type power couplers for superconducting cavities is underway in Orsay. Such couplers need to be developed for linear accelerators which require high gradient superconducting cavities, such as the European X-ray Free Electron Laser or the International Linear Collider (ILC) project. We will describe the technical demands which have to be met to build such couplers and will present pro-type designs which are intended to meet these demands, taking the ILC as an example. A description of the infra-structure necessary for the coupler development will also be given along with first high power tests results on a series of power couplers built in industry

    Probing Nucleon Strangeness with Neutrinos: Nuclear Model Dependences

    Get PDF
    The extraction of the nucleon's strangeness axial charge, Delta_s, from inclusive, quasielastic neutral current neutrino cross sections is studied within the framework of the plane-wave impulse approximation. We find that the value of Delta_s can depend significantly on the choice of nuclear model used in analyzing the quasielastic cross section. This model-dependence may be reduced by one order of magnitude when Delta_s is extracted from the ratio of total proton to neutron yields. We apply this analysis to the interpretation of low-energy neutrino cross sections and arrive at a nuclear theory uncertainty of plus/minus 0.03 on the value of Delta_s expected to be determined from the ratio of proton and neutron yields measured by the LSND collaboration. This error compares favorably with estimates of the SU(3)-breaking uncertainty in the value of Delta_s extracted from inclusive, polarized deep-inelastic structure function measurements. We also point out several general features of the quasielastic neutral current neutrino cross section and compare them with the analogous features in inclusive, quasielastic electron scattering.Comment: 40 pages (including 11 postscript figures), uses REVTeX and epsfig.st

    Malignant Fibrous Histiocytoma of The Pancreas

    Get PDF
    A case of fibrous histiocytoma of low grade malignancy arising from the uncinate lobe of the pancreas is reported. This is an unusual site for these extremely rare tumours. Survival up to 4 years has been achieved in our patient following surgical resection

    The Strangeness Radius and Magnetic Moment of the Nucleon Revisited

    Full text link
    We update Jaffe's estimate of the strange isoscalar radius and magnetic moment of the nucleon. We make use of a recent dispersion--theoretical fit to the nucleon electromagnetic form factors and an improved description of symmetry breaking in the vector nonet. We find μs=0.24±0.03\mu_s = -0.24 \pm 0.03~n.m. and rs2=0.21±0.03r_s^2 = 0.21 \pm 0.03~fm2^2. The strange formfactor F2s(t)F_2^s (t) follows a dipole with a cut--off mass of 1.46~GeV, F2s(t)=μs(1t/2.14GeV2)2F_2^s (t)= \mu_s (1-t/2.14 \, {\rm GeV}^2 )^{-2}. These numbers should be considered as upper limits on the strange vector current matrix--elements in the nucleon.Comment: 8 pp, LaTeX, uses epsf, 1 figure in separate fil

    Tests of Lorentz violation in muon antineutrino to electron antineutrino oscillations

    Get PDF
    A recently developed Standard-Model Extension (SME) formalism for neutrino oscillations that includes Lorentz and CPT violation is used to analyze the sidereal time variation of the neutrino event excess measured by the Liquid Scintillator Neutrino Detector (LSND) experiment. The LSND experiment, performed at Los Alamos National Laboratory, observed an excess, consistent with neutrino oscillations, of νˉe{\bar\nu}_e in a beam of νˉμ{\bar\nu}_\mu. It is determined that the LSND oscillation signal is consistent with no sidereal variation. However, there are several combinations of SME coefficients that describe the LSND data; both with and without sidereal variations. The scale of Lorentz and CPT violation extracted from the LSND data is of order 101910^{-19} GeV for the SME coefficients aLa_L and E×cLE \times c_L. This solution for Lorentz and CPT violating neutrino oscillations may be tested by other short baseline neutrino oscillation experiments, such as the MiniBooNE experiment.Comment: 10 pages, 10 figures, 2 tables, uses revtex4 replaced with version to be published in Physical Review D, 11 pages, 11 figures, 2 tables, uses revtex

    Measuring Active-Sterile Neutrino Oscillations with a Stopped Pion Neutrino Source

    Full text link
    The question of the existence of light sterile neutrinos is of great interest in many areas of particle physics, astrophysics, and cosmology. Furthermore, should the MiniBooNE experiment at Fermilab confirm the LSND oscillation signal, then new measurements are required to identify the mechanism responsible for these oscillations. Possibilities include sterile neutrinos, CP or CPT violation, variable mass neutrinos, Lorentz violation, and extra dimensions. In this paper, we consider an experiment at a stopped pion neutrino source to determine if active-sterile neutrino oscillations with delta-m greater than 0.1 eV2 can account for the signal. By exploiting stopped pi+ decay to produce a monoenergetic nu_mu source, and measuring the rate of the neutral current reaction nu_x + 12C -> nu_x +12C* as a function of distance from the source, we show that a convincing test for active-sterile neutrino oscillations can be performed.Comment: 10 pages, 9 figure

    Search for π0νμνˉμ\pi^0 \to \nu_{\mu}\bar\nu_{\mu} Decay in LSND

    Get PDF
    We observe a net beam-excess of 8.7±6.38.7 \pm 6.3 (stat) ±2.4\pm 2.4 (syst) events, above 160 MeV, resulting from the charged-current reaction of νμ\nu_{\mu} and/or νˉμ\bar\nu_{\mu} on C and H in the LSND detector. No beam related muon background is expected in this energy regime. Within an analysis framework of π0νμνˉμ\pi^0 \to \nu_{\mu}\bar\nu_{\mu}, we set a direct upper limit for this branching ratio of Γ(π0νμνˉμ)/Γ(π0all)<1.6×106\Gamma(\pi^0 \to \nu_\mu \bar\nu_\mu) / \Gamma(\pi^0 \to all) < 1.6 \times 10^{-6} at 90% confidence level.Comment: 4 pages, 4 figure

    A Letter of Intent to Build a MiniBooNE Near Detector: BooNE

    Full text link
    There is accumulating evidence for a difference between neutrino and antineutrino oscillations at the 1\sim 1 eV2^2 scale. The MiniBooNE experiment observes an unexplained excess of electron-like events at low energies in neutrino mode, which may be due, for example, to either a neutral current radiative interaction, sterile neutrino decay, or to neutrino oscillations involving sterile neutrinos and which may be related to the LSND signal. No excess of electron-like events (0.5±7.8±8.7-0.5 \pm 7.8 \pm 8.7), however, is observed so far at low energies in antineutrino mode. Furthermore, global 3+1 and 3+2 sterile neutrino fits to the world neutrino and antineutrino data suggest a difference between neutrinos and antineutrinos with significant (sin22θμμ35\sin^22\theta_{\mu \mu} \sim 35%) νˉμ\bar \nu_\mu disappearance. In order to test whether the low-energy excess is due to neutrino oscillations and whether there is a difference between νμ\nu_\mu and νˉμ\bar \nu_\mu disappearance, we propose building a second MiniBooNE detector at (or moving the existing MiniBooNE detector to) a distance of 200\sim 200 m from the Booster Neutrino Beam (BNB) production target. With identical detectors at different distances, most of the systematic errors will cancel when taking a ratio of events in the two detectors, as the neutrino flux varies as 1/r21/r^2 to a calculable approximation. This will allow sensitive tests of oscillations for both νe\nu_e and νˉe\bar \nu_e appearance and νμ\nu_\mu and νˉμ\bar \nu_\mu disappearance. Furthermore, a comparison between oscillations in neutrino mode and antineutrino mode will allow a sensitive search for CP and CPT violation in the lepton sector at short baseline (Δm2>0.1\Delta m^2 > 0.1 eV2^2).Comment: 43 pages, 40 figure
    corecore