1,454 research outputs found
Polarization shaping for control of nonlinear propagation
We study the nonlinear optical propagation of two different classes of
space-varying polarized light beams -- radially symmetric vector beams and
Poincar\'e beams with lemon and star topologies -- in a rubidium vapour cell.
Unlike Laguerre-Gauss and other types of beams that experience modulational
instabilities, we observe that their propagation is not marked by beam breakup
while still exhibiting traits such as nonlinear confinement and self-focusing.
Our results suggest that by tailoring the spatial structure of the
polarization, the effects of nonlinear propagation can be effectively
controlled. These findings provide a novel approach to transport high-power
light beams in nonlinear media with controllable distortions to their spatial
structure and polarization properties.Comment: 5 pages, and 4 figure
Relocation of the Salvador Camarena Burial: Historical and Bioarcheological Investigations of a Mexican Migrant Worker Grave (41MV372) in Maverick County, Texas
F rom 2011 through 2014, the Texas Department of Transportation collaborated with Prewitt and Associates, Inc., to investigate an isolated grave in a remote area alongside FM 481 in Maverick County, Texas. An initial archeological investigation confirmed that the location was a historic grave, and archival records revealed that it contained the remains of Salvador Camarena, a Mexican citizen who died in Texas in January 1950. Additional research identified Camarena’s son and other family members living in Mexico, California, and Texas. With the family’s permission, the burial remains were exhumed, examined, and reinterred at La Marque Cemetery in Galveston County, Texas, where Camarena’s mother and two sisters are buried.
The bioarcheological analysis of the skeletal remains corroborates the historical information. Together, the bioarcheological and historical data provide a rare glimpse into the life and death of a migrant laborer. The burial of one immigrant worker may seem insignificant. However, the Camarena case represents a sad but common theme in the history of migrant labor. Like many before him and even more since, Camarena probably died in a foreign country seeking a means to support his family when traveling to seasonal agricultural work
Interferometry with Photon-Subtracted Thermal Light
We propose and implement a quantum procedure for enhancing the sensitivity
with which one can determine the phase shift experienced by a weak light beam
possessing thermal statistics in passing through an interferometer. Our
procedure entails subtracting exactly one (which can be generalized to m)
photons from the light field exiting an interferometer containing a
phase-shifting element in one of its arms. As a consequence of the process of
photon subtraction, and somewhat surprisingly, the mean photon number and
signal-to-noise ratio of the resulting light field are thereby increased,
leading to enhanced interferometry. This method can be used to increase
measurement sensitivity in a variety of practical applications, including that
of forming the image of an object illuminated only by weak thermal light
Recommended from our members
Predicting population responses to environmental change from individual-level mechanisms: towards a standardized mechanistic approach
Animal populations will mediate the response of global biodiversity to environmental changes. Population models are thus important tools for both understanding and predicting animal responses to uncertain future conditions. Most approaches, however, are correlative and ignore the individual-level mechanisms that give rise to population dynamics. Here, we assess several existing population modelling approaches, and find limitations to both ‘correlative’ and ‘mechanistic’ models. We advocate the need for a standardised mechanistic approach for linking individual mechanisms (physiology, behaviour and evolution) to population dynamics in spatially explicit landscapes. Such an approach is potentially more flexible and informative than current population models. Key to realising this goal, however, is overcoming current data limitations, the development and testing of eco-evolutionary theory to represent interactions between individual mechanisms, and standardised multidimensional environmental change scenarios which incorporate multiple stressors. Such progress is essential in supporting environmental decisions in uncertain future conditions
Nitrogen-induced terrestrial eutrophication: cascading effects and impacts on ecosystem services
Human activity has significantly increased the deposition of nitrogen (N) on terrestrial ecosystems over pre-industrial levels leading to a multitude of effects including losses of biodiversity, changes in ecosystem functioning, and impacts on human well-being. It is challenging to explicitly link the level of deposition on an ecosystem to the cascade of ecological effects triggered and ecosystem services affected, because of the multitude of possible pathways in the N cascade. To address this challenge, we report on the activities of an expert workshop to synthesize information on N-induced terrestrial eutrophication from the published literature and to link critical load exceedances with human beneficiaries by using the STressor–Ecological Production function–final ecosystem Services Framework and the Final Ecosystem Goods and Services Classification System (FEGS-CS). We found 21 N critical loads were triggered by N deposition (ranging from 2 to 39 kg N·ha−1·yr−1), which cascaded to distinct beneficiary types through 582 individual pathways in the five ecoregions examined (Eastern Temperate Forests, Marine West Coast Forests, Northwestern Forested Mountains, North American Deserts, Mediterranean California). These exceedances ultimately affected 66 FEGS across a range of final ecosystem service categories (21 categories, e.g., changes in timber production, fire regimes, and native plant and animal communities) and 198 regional human beneficiaries of different types. Several different biological indicators were triggered in different ecosystems, including grasses and/or forbs (33% of all pathways), mycorrhizal communities (22%), tree species (21%), and lichen biodiversity (11%). Ecoregions with higher deposition rates for longer periods tended to have more numerous and varied ecological impacts (e.g., Eastern Temperate Forests, eight biological indicators) as opposed to other ecoregions (e.g., North American Deserts and Marine West Coast Forests each with one biological indicator). Nonetheless, although ecoregions differed by ecological effects from terrestrial eutrophication, the number of FEGS and beneficiaries impacted was similar across ecoregions. We found that terrestrial eutrophication affected all ecosystems examined, demonstrating the widespread nature of terrestrial eutrophication nationally. These results highlight which people and ecosystems are most affected according to present knowledge, and identify key uncertainties and knowledge gaps to be filled by future research
Calix[4]arene-Linked Bisporphyrin Hosts for Fullerenes: Binding Strength, Solvation Effects, and Porphyrin−Fullerene Charge Transfer Bands
A calix[4]arene scaffolding has been used to construct bisporphyrin ("jaws" porphyrin) hosts for supramolecular binding of fullerene guests. Fullerene affinities were optimized by varying the nature of the covalent linkage of the porphyrins to the calixarenes. Binding constants for C60 and C70 in toluene were explored as a function of substituents at the periphery of the porphyrin, and 3,5-di-tert-butylphenyl groups gave rise to the highest fullerene affinities (26,000 M(-1) for C60). The origin of this high fullerene affinity has been traced to differential solvation effects rather than to electronic effects. Studies of binding constants as a function of solvent (toluene < benzonitrile < dichloromethane < cyclohexane) correlate inversely with fullerene solubility, indicating that desolvation of the fullerene is a major factor determining the magnitude of binding constants. The energetics of fullerene binding have been determined in terms of DelatH and DeltaS and are consistent with an enthalpy-driven, solvation-dependent process. A direct relationship between supramolecular binding of a fullerene guest to a bisporphyrin host and the appearance of a broad NIR absorption band have been established. The energy of this band moves in a predictable manner as a function of the electronic structure of the porphyrin, thereby establishing its origin in porphyrin-to-fullerene charge transfer
Electromagnetic Reduction of Plasma Density During Atmospheric Reentry and Hypersonic Flights
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76341/1/AIAA-32147-259.pd
- …