23,957 research outputs found
Integration of paper spray ionization highâfield asymmetric waveform ion mobility spectrometry for forensic applications
Rationale: Paper spray ionization (PSI) is an attractive ambient ionization source for mass spectrometry (MS) since it allows the combination of surface sampling and ionization. The minimal sample preparation inherent in this approach greatly reduces the time needed for analysis. However, the ions generated from interfering compounds in the sample and the paper substrate may interfere with the analyte ions. Therefore, the integration of PSI with highâfield asymmetric ion mobility spectrometry (FAIMS) is of significant interest since it should reduce the background ions entering the mass analyzer without complicating the analysis or increasing analysis time. Here we demonstrate the integration of PSI with FAIMS/MS and its potential for analysis of samples of forensic interest.
Methods: In this work, the parameters that can influence the integration, including sampling and ionization by paper spray, the FAIMS separation of analytes from each other and background interferences, and the length of time that a usable signal can be observed for explosives on paper, were evaluated with the integrated system.
Results: In the negative ion analysis of 2,4,6âtrinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydroâ1,3,5,7âtetranitroâ1,3,5,7âtetrazocine (HMX), and 1,3,5âtrinitroperhydroâ1,3,5â triazine (RDX), amounts as low as 1 ng on paper were readily observed. The successful positive ion separation of a set of illicit drugs including heroin, methamphetamine, and cocaine was also achieved. In addition, the positive ion analysis of the chemical warfare agent simulants dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP) was evaluated.
Conclusions: The integration of PSIâFAIMS/MS was demonstrated for the analyses of explosives in negative ion mode and for illicit drugs and CW simulants in positive mode. Paper background ions that could interfere with these analyses were separated by FAIMS. The compensation voltage of an ion obtained by FAIMS provided an additional identification parameter to be combined with the mass spectrum for each analyte
An easy-to-use diagnostic system development shell
The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS
Desilting Efficiency Due to Empty Flushing of Agongdian Reservoir
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive
Broken time-reversal symmetry in Josephson junction involving two-band superconductors
A novel time-reversal symmetry breaking state is found theoretically in the
Josephson junction between the two-gap superconductor and the conventional
s-wave superconductor. This occurs due to the frustration between the three
order parameters analogous to the two antiferromagnetically coupled XY-spins
put under a magnetic field. This leads to the interface states with the
energies inside the superconducting gap. Possible experimental observations of
this state with broken time-reversal symmetry are discussed.Comment: 9 pages, 1 figur
Calculation of surface motions of a layered half-space
A new method is presented for computing the transient response of a set of horizontally stratified, linearly elastic layers overlying a uniform half-space and excited by vertically incident, transient plane waves. In addition, a simple approximate method of satisfactory accuracy is developed that reduces the computing time required. Calculated responses are compared with motions recorded under Union Bay in Seattle to evaluate the agreement between recorded and calculated motions
Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov's direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology
Spontaneous Crystallization of Skyrmions and Fractional Vortices in the Fast-rotating and Rapidly-quenched Spin-1 Bose-Einstein Condensates
We investigate the spontaneous generation of crystallized topological defects
via the combining effects of fast rotation and rapid thermal quench on the
spin-1 Bose-Einstein condensates. By solving the stochastic projected
Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a
hexagonal lattice of skyrmions, and a square lattice of half-quantized vortices
can be formed in a ferromagnetic and antiferromagnetic spinor BEC, respetively,
which can be imaged by using the polarization-dependent phase-contrast method
- âŠ