21,562 research outputs found

    Crossover from a square to a hexagonal pattern in Faraday surface waves

    Full text link
    We report on surface wave pattern formation in a Faraday experiment operated at a very shallow filling level, where modes with a subharmonic and harmonic time dependence interact. Associated with this distinct temporal behavior are different pattern selection mechanisms, favoring squares or hexagons, respectively. In a series of bifurcations running through a pair of superlattices the surface wave pattern transforms between the two incompatible symmetries. The close analogy to 2D and 3D crystallography is pointed out.Comment: 4 pages, 4 figure

    Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence

    Get PDF
    Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady-state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate over time-scales longer than the characteristic time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear-bursts are a significant driver of dynamo action in turbulent magnetoconvection

    New urea-absorbing polymers for artificial kidney machines

    Get PDF
    Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia

    Aldehyde-containing urea-absorbing polysaccharides

    Get PDF
    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo

    Matrix partitioning and EOF/principal component analysis of Antarctic Sea ice brightness temperatures

    Get PDF
    A field of measured anomalies of some physical variable relative to their time averages, is partitioned in either the space domain or the time domain. Eigenvectors and corresponding principal components of the smaller dimensioned covariance matrices associated with the partitioned data sets are calculated independently, then joined to approximate the eigenstructure of the larger covariance matrix associated with the unpartitioned data set. The accuracy of the approximation (fraction of the total variance in the field) and the magnitudes of the largest eigenvalues from the partitioned covariance matrices together determine the number of local EOF's and principal components to be joined by any particular level. The space-time distribution of Nimbus-5 ESMR sea ice measurement is analyzed

    Pairing, Ferromagnetism, and Condensation of a normal spin-1 Bose gas

    Full text link
    We theoretically study the stability of a normal, spin disordered, homogenous spin-1 Bose gas against ferromagnetism, pairing, and condensation through a Random Phase Approximation which includes exchange (RPA-X). Repulsive spin-independent interactions stabilize the normal state against both ferromagnetism and pairing, and for typical interaction strengths leads to a direct transition from an unordered normal state to a fully ordered single particle condensate. Atoms with much larger spin-dependent interaction may experience a transition to a ferromagnetic normal state or a paired superfluid, but, within the RPA-X, there is no instability towards a normal state with spontaneous nematic order. We analyze the role of the quadratic Zeeman effect and finite system size.Comment: 4 pages, 3 figures, 1 table. Supplementary materials attache

    Noise measurements for a twin-engine commercial jet aircraft during 3 deg approaches and level flyovers

    Get PDF
    Noise measurements have been made with a twin-engine commercial jet aircraft making 3 deg approaches and level flyovers. The flight-test data showed that, in the standard 3 deg approach configuration with 40 deg flaps, effective perceived noise level (EPNL) had a value of 109.5 effective perceived noise decibels (EPNdB). This result was in agreement with unpublished data obtained with the same type of aircraft during noise certification tests; the 3 deg approaches made with 30 deg flaps and slightly reduced thrust reduced the EPNL value by 1 EPNdB. Extended center-line noise determined during the 3 deg approaches with 40 deg flaps showed that the maximum reference A-weighted sound pressure level (LA,max)ref varied from 100.0 A-weighted decibels 2.01 km (108 n. mi.) from the threshold to 87.4 db(A) at 6.12 km (3.30 n. mi.) from the threshold. These test values were about 3 db(A) higher than estimates used for comparison. The test data along the extended center line during approaches with 30 deg flaps were 1 db(A) lower than those for approaches with 40 deg flaps. Flight-test data correlating (LA,max)ref with thrust at altitudes of 122 m (400 ft) and 610 m (2000 ft) were in agreement with reference data used for comparison

    Heat flow in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation to study the evolution of spherically symmetric fluid distributions undergoing dissipation in the form of radial heat flow. For a model which corresponds to an incompressible fluid departing from the static equilibrium, it is not possible to go far from the initial state after the emission of a small amount of energy. Initially collapsing distributions of matter are not permitted. Emission of energy can be considered as a mechanism to avoid the collapse. If the distribution collapses initially and emits one hundredth of the initial mass only the outermost layers evolve. For a model which corresponds to a highly compressed Fermi gas, only the outermost shell can evolve with a shorter hydrodynamic time scale.Comment: 5 pages, 5 figure
    • …
    corecore