2,077 research outputs found

    Exponential distributions of collective flow-event properties in viscous liquid dynamics

    Get PDF
    We study the statistics of flow events in the inherent dynamics in supercooled two- and three-dimensional binary Lennard-Jones liquids. Distributions of changes of the collective quantities energy, pressure and shear stress become exponential at low temperatures, as does that of the event "size" S≡∑di2S\equiv\sum {d_i}^2. We show how the SS-distribution controls the others, while itself following from exponential tails in the distributions of (1) single particle displacements dd, involving a Lindemann-like length dLd_L and (2) the number of active particles (with d>dLd>d_L).Comment: Accepter version (PRL

    Bethe lattice solution of a model of SAW's with up to 3 monomers per site and no restriction

    Full text link
    In the multiple monomers per site (MMS) model, polymeric chains are represented by walks on a lattice which may visit each site up to K times. We have solved the unrestricted version of this model, where immediate reversals of the walks are allowed (RA) for K = 3 on a Bethe lattice with arbitrary coordination number in the grand-canonical formalism. We found transitions between a non-polymerized and two polymerized phases, which may be continuous or discontinuous. In the canonical situation, the transitions between the extended and the collapsed polymeric phases are always continuous. The transition line is partly composed by tricritical points and partially by critical endpoints, both lines meeting at a multicritical point. In the subspace of the parameter space where the model is related to SASAW's (self-attracting self-avoiding walks), the collapse transition is tricritical. We discuss the relation of our results with simulations and previous Bethe and Husimi lattice calculations for the MMS model found in the literature.Comment: 25 pages, 9 figure

    Charge renormalization and phase separation in colloidal suspensions

    Full text link
    We explore the effects of counterion condensation on fluid-fluid phase separation in charged colloidal suspensions. It is found that formation of double layers around the colloidal particles stabilizes suspensions against phase separation. Addition of salt, however, produces an instability which, in principle, can lead to a fluid-fluid separation. The instability, however, is so weak that it should be impossible to observe a fully equilibrated coexistence experimentally.Comment: 7 pages, Europhysics Letters (in press

    Universal Formulae for Percolation Thresholds

    Full text link
    A power law is postulated for both site and bond percolation thresholds. The formula writes pc=p0[(d−1)(q−1)]−ad bp_c=p_0[(d-1)(q-1)]^{-a}d^{\ b}, where dd is the space dimension and qq the coordination number. All thresholds up to d→∞d\rightarrow \infty are found to belong to only three universality classes. For first two classes b=0b=0 for site dilution while b=ab=a for bond dilution. The last one associated to high dimensions is characterized by b=2a−1b=2a-1 for both sites and bonds. Classes are defined by a set of value for {p0; a}\{p_0; \ a\}. Deviations from available numerical estimates at d≤7d \leq 7 are within ±0.008\pm 0.008 and ±0.0004\pm 0.0004 for high dimensional hypercubic expansions at d≥8d \geq 8. The formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include

    Elasticity near the vulcanization transition

    Full text link
    Signatures of the vulcanization transition--amorphous solidification induced by the random crosslinking of macromolecules--include the random localization of a fraction of the particles and the emergence of a nonzero static shear modulus. A semi-microscopic statistical-mechanical theory is presented of the latter signature that accounts for both thermal fluctuations and quenched disorder. It is found (i) that the shear modulus grows continuously from zero at the transition, and does so with the classical exponent, i.e., with the third power of the excess cross-link density and, quite surprisingly, (ii) that near the transition the external stresses do not spoil the spherical symmetry of the localization clouds of the particles.Comment: REVTEX, 5 pages. Minor change

    Phase Transitions in a Two-Component Site-Bond Percolation Model

    Full text link
    A method to treat a N-component percolation model as effective one component model is presented by introducing a scaled control variable p+p_{+}. In Monte Carlo simulations on 16316^{3}, 32332^{3}, 64364^{3} and 1283128^{3} simple cubic lattices the percolation threshold in terms of p+p_{+} is determined for N=2. Phase transitions are reported in two limits for the bond existence probabilities p=p_{=} and p≠p_{\neq}. In the same limits, empirical formulas for the percolation threshold p+cp_{+}^{c} as function of one component-concentration, fbf_{b}, are proposed. In the limit p==0p_{=} = 0 a new site percolation threshold, fbc≃0.145f_{b}^{c} \simeq 0.145, is reported.Comment: RevTeX, 5 pages, 5 eps-figure

    Statistical Models on Spherical Geometries

    Full text link
    We use a one-dimensional random walk on DD-dimensional hyper-spheres to determine the critical behavior of statistical systems in hyper-spherical geometries. First, we demonstrate the properties of such a walk by studying the phase diagram of a percolation problem. We find a line of second and first order phase transitions separated by a tricritical point. Then, we analyze the adsorption-desorption transition for a polymer growing near the attractive boundary of a cylindrical cell membrane. We find that the fraction of adsorbed monomers on the boundary vanishes exponentially when the adsorption energy decreases towards its critical value.Comment: 8 pages, latex, 2 figures in p

    Effects of Impurities in Random Sequential Adsorption on a One-Dimensional Substrate

    Full text link
    We have solved the kinetics of random sequential adsorption of linear kk-mers on a one-dimensional disordered substrate for the random sequential adsorption initial condition and for the random initial condition. The jamming limits θ(∞,k′,k)\theta(\infty, k', k) at fixed length of linear kk-mers have a minimum point at a particular density of the linear k′k'-mers impurity for both cases. The coverage of the surface and the jamming limits are compared to the results for Monte Carlo simulation. The Monte Carlo results for the jamming limits are in good agreement with the analytical results. The continuum limits are derived from the analytical results on lattice substrates.Comment: 9 pages, latex, 1 figure not included, accepted in Phys. Rev.

    Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features

    Full text link
    In this paper we have studied a model for self-induced aggregation in Brownian particle incorporating the non-Markovian and non-Gaussian character of the associated random noise process. In this model the time evolution of each individual is guided by an over-damped Langevin equation of motion with a non-local drift resulting from the local unbalance distributions of the other individuals. Our simulation result shows that colored nose can induce the cluster formation even at large noise strength. Another observation is that critical noise strength grows very rapidly with increase of noise correlation time for Gaussian noise than non Gaussian one. However, at long time limit the cluster number in aggregation process decreases with time following a power law. The exponent in the power law increases remarkable for switching from Markovian to non Markovian noise process

    Competition for hydrogen bond formation in the helix-coil transition and protein folding

    Get PDF
    The problem of the helix-coil transition of biopolymers in explicit solvents, like water, with the ability for hydrogen bonding with solvent is addressed analytically using a suitably modified version of the Generalized Model of Polypeptide Chains. Besides the regular helix-coil transition, an additional coil-helix or reentrant transition is also found at lower temperatures. The reentrant transition arises due to competition between polymer-polymer and polymer-water hydrogen bonds. The balance between the two types of hydrogen bonding can be shifted to either direction through changes not only in temperature, but also by pressure, mechanical force, osmotic stress or other external influences. Both polypeptides and polynucleotides are considered within a unified formalism. Our approach provides an explanation of the experimental difficulty of observing the reentrant transition with pressure; and underscores the advantage of pulling experiments for studies of DNA. Results are discussed and compared with those reported in a number of recent publications with which a significant level of agreement is obtained.Comment: 21 pages, 3 figures, submitted to Phys Rev
    • …
    corecore