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Exponential Distributions of Collective Flow-Event Properties in Viscous Liquid Dynamics
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We study the statistics of flow events in the inherent dynamics in supercooled two- and three-

dimensional binary Lennard-Jones liquids. Distributions of changes of the collective quantities energy,

pressure, and shear stress become exponential at low temperatures, as does that of the event ‘‘size’’ S �
P

d2i . We show how the S distribution controls the others, while itself following from exponential tails in

the distributions of (1) single particle displacements d, involving a Lindemann-like length dL and (2) the

number of active particles (with d > dL).

DOI: 10.1103/PhysRevLett.102.055701 PACS numbers: 64.70.Q�, 62.10.+s, 66.20.�d

Many complex systems, including turbulent flows [1],
plastically deforming crystals [2], and financial markets
[3], are characterized by intermittent, stochastic dynamics.
The statistics of dynamical events are important, with
particular consequences for the probability of extreme
events: In Gaussian statistics, values more than 5 standard
deviations from the mean account for less than 10�6 of the
distribution. For a symmetric exponential distribution, on
the other hand, they account for about one thousandth.
Examples of exponential distributions (which may be con-
sidered intermediate between the Gaussian and power-law
cases) include bursts of protein production from gene
expression [4] and even returns in financial time series
(at least for not-too-large values) [5].

Rearrangements of molecules known as ‘‘flow events’’
are the fundamental processes giving rise to structural
relaxation and flow in disordered systems ranging from
the equilibrium case of highly viscous liquids [6–8] to
nonequilibrium systems such as glasses [9], granular ma-
terials [10], and foams [11]. For viscous (or ‘‘glass-
forming’’) liquids, it has been accepted since Goldstein’s
1969 paper [6] that the dynamics may be understood in
terms of a division into fast vibrational motion around a
particular energy minimum, and relatively rare transitions
between neighboring minima. It is the latter that are re-
sponsible for the slow dynamics [7,12]; thus, a detailed
understanding of their nature is essential, particularly since
many theoretical approaches start by making assumptions
about the flow events [13–15]. Computer simulations pro-
vide the means to go beyond assumptions, and in recent
years have provided much insight into the kinds of mo-
lecular motions that occur in a supercooled liquid. Most
workers have concentrated on particle displacements. But
of more direct relevance to experiments are collective
properties of the dynamics—changes in quantities such
as potential energy E, pressure p, and shear stress �s.
Knowledge of their distributions, and how those depend
on temperature, is sure to be relevant for understanding the
slowing down of dynamics in viscous liquids. Vogel et al.
[16] studied the relation between particle displacements
and the size of energy changes during flow events, and

while they reported exponential tails in both, they did not
examine their relationship in detail, while Schrøder et al.
also reported such tails in flow-event displacements [7].
Exponential distributions of forces in a simulated Lennard-
Jones fluid were observed already in 1987 [17], although
their relevance to flow-event properties is unclear. It is now
becoming possible to study individual particle displace-
ments experimentally, as Schall et al. have done for a
colloidal system [18]; as yet the analysis is limited to a
few events. The exponential tails recently reported for the
van Hove correlation function [19] reflect the cumulative
effect of many flow events, whereas this work focuses on
statistics on single flow events.
In this Letter we present simulation data from two- and

three-dimensional binary Lennard-Jones (BLJ) model flu-
ids, brought to a viscous state by cooling. By studying the
so-called ‘‘inherent dynamics’’ [7]—the trajectory ob-
tained by mapping configurations to local energy min-
ima—we identify flow events and study their statistics.
Our main results are (1) at low temperatures T the distri-
butions of changes of E, p, and �s are exponential; (2) the
sum of squared displacements S, a geometrical measure of
the size of an event, is the controlling quantity; (3) the
mean event size decreases with decreasing temperature;
(4) the exponential distribution (ED) of S can be traced to
the existence of an exponential tail in the distribution of
particle displacements during events, characterized by a
Lindemann-like length scale, which defines ‘‘active’’ par-
ticles. The number of active particles is broadly distributed
at high T, typically comprising a large fraction of the
particles in the system, whereas at low T it is also expo-
nentially distributed, with a mean of a few tens of particles.
This crossover coincides with the increasing relevance of
minima transitions to the dynamics at lower temperature.
The parameters for the BLJ potential are [where � and �

are the energy and length scales for interactions between
large (L) and small (S) particles] �LL ¼ 1, �SS ¼ 0:5,
�LS ¼ 1:5, �LL ¼ 1, �SS ¼ 0:88, �LS ¼ 0:8. All particles
have the same mass m ¼ 1. These parameters are identical
to those of the BLJ introduced by Kob and Andersen [20].
The potential was truncated using an interpolating poly-
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nomial between 2:4��� and 2:7��� (�;� 2 fL; Sg). All
results reported here are from constant volume simulations
with periodic boundary conditions, with Np ¼ 700 (1372)

particles in 2D (3D), of which 60% (80%) were of type L,
at a density of 1:2��2

LL (1:2��3
LL), using a time step of 0.01

�LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=�LL

p
(0.005 at T � 1:0). The system size was

chosen to allow a large range of event sizes. From now
on, all quantities will be reported in the ‘‘natural’’ units
defined by �LL, �LL, and m. Two-step relaxation, a signa-
ture of landscape-influenced dynamics, first appears at T �
0:50 (2D) and T ¼ 0:60 (3D).

To identify flow events we carried out Stillinger’s pro-
cedure [21] of quenching configurations to the ‘‘nearest’’
local minimum. For T � 0:5, we quenched every time step.
For lower T we quenched every tenth time step, and if a
change of minimum was observed, the simulation was
‘‘backtracked’’ and quenched at each of the intervening
time steps. We detected events using the sum of squared
particle displacements S ¼ P

id
2
i , where di is the magni-

tude of the displacement of the ith particle between suc-
cessive inherent structures: A value greater than 10�3 is
sufficient to distinguish a genuine change of minimum
from numerical noise. This criterion is consistent with one
based on changes in inherent energy or stress. Care was
exercised in the minimization process [22]. In the follow-
ing we place somewhat more emphasis on the 2D data be-
cause better statistics were obtained; due to a larger num-
ber of particles in 3D (though the linear size is more than a
factor of 2 smaller) and the larger number of neighbors per
particle, the minimization is more time consuming (by
about a factor of 6). Thus ð10–20Þ � 103 events per tem-
perature were obtained in 3D compared to 105 in 2D.

Figure 1 shows Pð�NXÞ as a function of j�NXj, where X
is E, p, or�s and the�

N denotes the change normalized by

the rms equilibrium fluctuations [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðX � hXiÞ2ip

] calcu-
lated from the time series of inherent states (T ¼ 0:33).
The tails are very close to exponential for j�NXj * 0:25.
Though the distributions differ at small values, the tails for
p and E are very similar, with the same decay length ��
0:16 (possibly a reflection of the strong-pressure correla-
tions recently reported for van der Waals systems [25]),
while that for shear is larger, �� 0:28. To quantify how
close to Gaussian a distribution is we use a non-Gaussian
parameter NGP � hð�xÞ4i=3ðhð�xÞ2iÞ2 � 1 for any quan-
tity x. This is zero for a Gaussian distribution and unity for
a (symmetric) ED. The inset of the figure compares dis-
tributions of shear stress changes at the highest and lowest
temperatures, now normalized to unit width. That from
T ¼ 1:5 is clearly more Gaussian, albeit with an exponen-
tial tail a few standard deviations from the mean.

By symmetry, changes of shear stress are uncorrelated
with those of energy and pressure, meaning that none of
these quantities can be considered a meaningful measure of
the ‘‘size’’ of an event. A natural measure of the size of an
event is the quantity used to detect them, S ¼ P

id
2
i . The S

distributions are shown in Fig. 2(a). Going from high to

low temperature, there is a dramatic reduction in the aver-
age size, while the shape of the distribution becomes
increasingly exponential [26]. Examining the distributions
of �X for a narrow range of S, we find they are Gaussian
even at low T when the full distributions are exponential
[Fig. 2(b)]. For not-too large values of S (S & 10), the
variance for these fixed-S distributions rises approximately
linearly with S [right-hand panels of Fig. 2(b)]. This shows
that for a given S, �X is essentially a sum of random
contributions, whose number is proportional to S, the
size of the event. This relationship is independent of T
for ��s (lower right-hand panel), but this holds only for
small S for �p and �E (upper right-hand panel). It is not
clear why this is. In all cases the variance tends to saturate
as S exceeds 20 (50 for E at T ¼ 1:0).
The above can be made mathematically explicit by

writing Pð�XÞ ¼ R1
0 Pð�XjSÞPðSÞdS. At low T if PðSÞ ¼

ð1=hSiÞ expð�S=hSiÞ and the conditional probability
Pð�XjSÞ is a Gaussian with variance �XS, then integration

gives Pð�XÞ ¼ 1=ð2�XhSiÞ expð�2j�Xj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�XhSi

p Þ.
Linear fits to the S < 10 data for T ¼ 0:33 give for �X

the values 0.32, 1:5� 10�3, and 5:8� 10�3 for E, p, and
�s, respectively. The decay lengths of the corresponding

EDs should be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XhSi=2

p
. For T ¼ 0:33, hSi ¼ 1:83, we

get values 0.54, 0.012, and 0.023. After normalizing by the
rms fluctuations as was done in Fig. 1, these become 0.16,
0.15, 0.26, in reasonable agreement with the decay lengths
determined in Fig. 1.
To understand the distributions of S we consider the

distributions of individual (large) particle displacements
d in flow events, shown in Fig. 3. As found in Refs. [7,16],
clear exponential tails appear for d larger than about 0.2.
The decay lengths vary surprisingly little over the simu-
lated temperature range, 0.08–0.15. Most of the variation is
in the number of particles in the tail region (the average
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FIG. 1 (color online). Distributions of �NE, �Np, �N�s for
T ¼ 0:33 (2D); dashed lines show exponential fits to values
above 0.3, with decay lengths 0.160, 0.162, 0.284 for E, p, �s,
respectively. Inset: Distribution of ��s at T ¼ 1:5 and 0.33, now
normalized to have unit standard deviation, and compared with a
standard normal distribution. Non-Gaussian parameters (NGP)
are indicated for each distribution.
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number per event). We find it useful to take the length scale
�0:1 suggested by the decay length seriously, and define
the ‘‘active’’ particles as those with d > dL ¼ 0:1 (inde-
pendent of T for simplicity).

Distributions of NA, the number of active particles, are
shown in the right-hand panel of Fig. 3. There is a striking
shift in both the shape and the mean value from high to low
T: A typical event at high T involves most of the system;
indeed, larger events are more probable than smaller ones.
At low T the distribution becomes exponential with a mean
of order a few tens of particles. In this regime, the events
are relatively localized though not necessarily compact
(see the example in Fig. 3)—stringlike spatial correlation
is present in varying degrees in small and intermediate-
sized events, while the largest events tend to have a more
compact structure. The spatial structure of flow events has
been investigated by different authors. While Schrøder
et al. found stringlike correlations for transitions between

minima, Appignanesi et al. used the distance matrix
method to identify transitions between so-called metaba-
sins [27]. Their analysis highlights events involving a large
fraction of the system, which was relatively small (150
particles). In fact, their data (Fig. 2 of Ref. [27]) are
consistent with an exponential tail with characteristic size
of order 10–20 particles; the ‘‘democratic events’’ would
simply be the largest events in the tail. On the other hand ,
we observe stringlike features in smaller events, but not so
much in larger ones. Thus our results encompass both those
of Schrøder et al. and Appignanesi et al.
Figure 4 shows data for a 3D system. The basic features

are similar to the 2D case, and, in particular, the S distri-
bution controls the others. Also shown in the third panel of
Fig. 4 is the distribution of NA for a smaller system, NP ¼
110, which is clearly cut off by the system size—this could
well explain a factor of 4 difference in relaxation time
between the two sizes that we observe.
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FIG. 3 (color online). Left-hand panel: Distributions of
L-particle displacements during events at four temperatures,
and exponential fits of tails (d > 0:3), with � denoting decay
length. S-particle displacements are shown for the lowest
temperature (where the difference is greatest). Right-hand
panel: Distribution of NA, the number of active particles, for
the same temperatures, with fits for the three lowest tempera-
tures. A visualization of the 35 active particles in an event at T ¼
0:33 is shown in the upper part.
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FIG. 2 (color online). (a) Distributions of S for events for
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determined from the self-intermediate scattering function are
also indicated. (b) Left-hand panel: Normalized change in shear
stress for event size S in different narrow intervals at T ¼ 0:33.
Right-hand panels: Variance of (absolute) changes of (top) E
and (bottom) �s as a function of S. For the range of S relevant
for lower T, the variances are almost linear in S. This linear
relation is independent of T for �s, while the slope increases
with T for E.
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The notation dL is meant to suggest a Lindemann-like
interpretation. Several authors have emphasized the impor-
tance of such a length scale in the context of mechanical
instabilities associated with structural relaxation in liquids
[15,28,29], also in experiments [18]. Its appearance in the
present context can be interpreted as that events are in a
loose sense ‘‘discretized’’ in units of dL: each event in-
volves some number of particles each of which is displaced
some number of dL units. Exponential distributions may be
interpreted as the statement that there is no preferred
number of basic units (this is analogous to a simple model
for polymer size distributions, where the probability to
attach a new monomer does not depend on the current
length of the chain [30]).

The crossover to exponential distributions is associated
with one to well-defined localized events, whose mean size
decreases with T. The decrease indicates increasing mate-
rial stability. A similar result was found by Fabricius and
Stariolo when perturbing equilibrium configurations and
comparing the corresponding inherent states [31]. If event
sizes decrease with decreasing temperature, this presum-
ably has consequences for relaxation times, because a
given change takes more events, although decreasing size
(in particular �E) also suggests that energy barriers for
individual events also decrease (we will study energy
barriers in upcoming work). On the other hand, when there
is a distribution of barriers, there should be increased
tendency for repeated reverse transitions. This could be
examined by studying correlations between events, which
we have ignored here, but will address in upcoming work.
One way to account for forward-backward correlations,
proposed by Doliwa and Heuer [32], involves grouping
minima into larger structures called metabasins and study-
ing transitions between these. Their analysis indicates
growing effective barriers as T decreases, consistent with
non-Arrhenius slowing down of dynamics. Our analysis
focuses on the more fundamental units of dynamics, indi-
vidual minima transitions, because these are (in principle)
unambiguously defined and it is worth understanding their
statistics in detail before attempting to coarse grain. The
analysis suggests the somewhat paradoxical result that
individual event barriers decrease as T does. This empha-
sizes even more the role of correlations.

Center for viscous liquid dynamics ‘‘Glass And Time’’
is sponsored by The Danish National Research Foundation.
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