2,011 research outputs found
Bats Use Magnetite to Detect the Earth's Magnetic Field
While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals
Plasmon attenuation and optical conductivity of a two-dimensional electron gas
In a ballistic two-dimensional electron gas, the Landau damping does not lead
to plasmon attenuation in a broad interval of wave vectors q << k_F. Similarly,
it does not contribute to the optical conductivity \sigma (\omega, q) in a wide
domain of its arguments, E_F > \omega > qv_F, where E_F, k_F and v_F are,
respectively, the Fermi energy, wavevector and velocity of the electrons. We
identify processes that result in the plasmon attenuation in the absence of
Landau damping. These processes are: the excitation of two electron-hole pairs,
phonon-assisted excitation of one pair, and a direct plasmon-phonon conversion.
We evaluate the corresponding contributions to the plasmon linewidth and to the
optical conductivity.Comment: 8 pages, 4 figures; final form, misprints correcte
Preparation, Characterization, and Electrochemical Activation of a Model [Cp*Rh] Hydride
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.8b02160.Monomeric half-sandwich rhodium hydride complexes are often proposed as intermediates in catalytic cycles, but relatively few such compounds have been isolated and studied, limiting understanding of their properties. Here, we report preparation and isolation of a monomeric rhodium(III) hydride complex bearing the pentamethylcyclopentadienyl (Cp*) and bis(diphenylphosphino)benzene (dppb) ligands. The hydride complex is formed rapidly upon addition of weak acid to a reduced precursor complex, Cp*Rh(dppb). Single-crystal X-ray diffraction data for the [Cp*Rh] hydride, which were previously unavailable for this class of compounds, provide evidence of the direct Rh–H interaction. Complementary infrared spectra show the Rh–H stretching frequency at 1986 cm−1. In contrast to results with other [Cp*Rh] complexes bearing diimine ligands, treatment of the isolated hydride with strong acid does not result in H2 evolution. Electrochemical studies reveal that the hydride complex can be reduced only at very negative potentials (ca. −2.5 V vs. ferrocenium/ferrocene), resulting in Rh–H bond cleavage and H2 generation. These results are discussed in the context of catalytic H2 generation, and development of design rules for improved catalysts bearing the [Cp*] ligand.University of Kansas Undergraduate Research AwardS10OD016360S10RR024664NSF MRI Grant CHE-162592
Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors
Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust water-oxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, principally consisting of iridium and oxygen, which is a robust and long-lived catalyst for water oxidation, when driven electrochemically. The catalyst material is generated by a simple anodic deposition from Cp*Ir aqua or hydroxo complexes in aqueous solution. This work suggests that organometallic precursors may be useful in electrodeposition of inorganic heterogeneous catalysts
Single-Electron Redox Chemistry on the [Cp*Rh] Platform Enabled by a Nitrated Bipyridyl Ligand
This work is licensed under a Creative Commons Attribution 4.0 International License.[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) are attracting renewed interest in coordination chemistry and catalysis, but these useful compounds often undergo net two-electron redox cycling that precludes observation of individual one-electron reduction events. Here, we show that a [Cp*Rh] complex bearing the 4,4′-dinitro-2,2′-bipyridyl ligand (dnbpy) (3) can access a distinctive manifold of five oxidation states in organic electrolytes, contrasting with prior work that found no accessible reductions in aqueous electrolyte. These states are readily generated from a newly isolated and fully characterized rhodium(III) precursor complex 3, formulated as [Cp*Rh(dnbpy)Cl]PF6. Single-crystal X-ray diffraction (XRD) data, previously unavailable for the dnbpy ligand bound to the [Cp*Rh] platform, confirm the presence of both [η5-Cp*] and [κ2-dnbpy]. Four individual one-electron reductions of 3 are observed, contrasting sharply with the single two-electron reductions of other [Cp*Rh] complexes. Chemical preparation and the study of the singly reduced species with electronic absorption and electron paramagnetic resonance spectroscopies indicate that the first reduction is predominantly centered on the dnbpy ligand. Comparative cyclic voltammetry studies with [NBu4][PF6] and [NBu4][Cl] as supporting electrolytes indicate that the chloride ligand can be lost from 3 by ligand exchange upon reduction. Spectroelectrochemical studies with ultraviolet (UV)-visible detection reveal isosbestic behavior, confirming the clean interconversion of the reduced forms of 3 inferred from the voltammetry with [NBu4][PF6] as supporting electrolyte. Electrochemical reduction in the presence of triethylammonium results in an irreversible response, but does not give rise to catalytic H2 evolution, contrasting with the reactivity patterns observed in [Cp*Rh] complexes bearing bipyridyl ligands with less electron-withdrawing substituents.US National Science Foundation award OIA-1833087KU Hall Chemical Research FundCenter for Undergraduate Research at the University of KansasNIH S10OD016360NIH S10RR024664NSF MRI funding (CHE-1625923
4,5-Diazafluorene and 9,9’-Dimethyl-4,5-Diazafluorene as Ligands Supporting Redox-Active Mn and Ru Complexes
This work is licensed under a Creative Commons Attribution 4.0 International License.4,5-diazafluorene (daf) and 9,9’-dimethyl-4,5-diazafluorene (Me2daf) are structurally similar to the important ligand 2,2’-bipyridine (bpy), but significantly less is known about the redox and spectroscopic properties of metal complexes containing Me2daf as a ligand than those containing bpy. New complexes Mn(CO)3Br(daf) (2), Mn(CO)3Br(Me2daf) (3), and [Ru(Me2daf)3](PF6)2 (5) have been prepared and fully characterized to understand the influence of the Me2daf framework on their chemical and electrochemical properties. Structural data for 2, 3, and 5 from single-crystal X-ray diffraction analysis reveal a distinctive widening of the daf and Me2daf chelate angles in comparison to the analogous Mn(CO)3(bpy)Br (1) and [Ru(bpy)3]2+ (4) complexes. Electronic absorption data for these complexes confirm the electronic similarity of daf, Me2daf, and bpy, as spectra are dominated in each case by metal-to-ligand charge transfer bands in the visible region. However, the electrochemical properties of 2, 3, and 5 reveal that the redox-active Me2daf framework in 3 and 5 undergoes reduction at a slightly more negative potential than that of bpy in 1 and 4. Taken together, the results indicate that Me2daf could be useful for preparation of a variety of new redox-active compounds, as it retains the useful redox-active nature of bpy but lacks the acidic, benzylic C–H bonds that can induce secondary reactivity in complexes bearing daf.US National Science Foundation (OIA-1833087)NSF REU Program in Chemistry at the University of Kansas (CHE-1560279)NIH T32 GM008545-25NIH S10OD016360NIH S10RR024664CHE-162592
Identity of electrons and ionization equilibrium
It is perhaps appropriate that, in a year marking the 90th anniversary of
Meghnad Saha seminal paper (1920), new developments should call fresh attention
to the problem of ionization equilibrium in gases. Ionization equilibrium is
considered in the simplest "physical" model for an electronic subsystem of
matter in a rarefied state, consisting of one localized electronic state in
each nucleus and delocalized electronic states considered as free ones. It is
shown that, despite the qualitative agreement, there is a significant
quantitative difference from the results of applying the Saha formula to the
degree of ionization. This is caused by the fact that the Saha formula
corresponds to the "chemical" model of matter.Comment: 9 pages, 2 figure
Copper-catalyzed synthesis of masked (hetero)aryl sulfinates
Catalysis using substoichiometric copper facilitates the synthesis of masked (hetero)aryl sulfinates under mild, base-free conditions from aryl iodides and the commercial sulfonylation reagent sodium 1-methyl 3-sulfinopropanoate (SMOPS). The development of a tert-butyl ester variant of the SMOPS reagent allowed the use of aryl bromide substrates. The sulfones thus generated can be unmasked and functionalized in situ to form a variety of sulfonyl-containing functional groups
- …