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Abstract

Monomeric half-sandwich rhodium hydride complexes are often proposed as intermediates in 

catalytic cycles, but relatively few such compounds have been isolated and studied, limiting 

understanding of their properties. Here, we report preparation and isolation of a monomeric 

rhodium(III) hydride complex bearing the pentamethylcyclopentadienyl (Cp*) and 

bis(diphenylphosphino)benzene (dppb) ligands. The hydride complex is formed rapidly upon 

addition of weak acid to a reduced precursor complex, Cp*Rh(dppb). Single-crystal X-ray 

diffraction data for the [Cp*Rh] hydride, which were previously unavailable for this class of 

compounds, provide evidence of the direct Rh–H interaction. Complementary infrared spectra 

show the Rh–H stretching frequency at 1986 cm−1. In contrast to results with other [Cp*Rh] 

complexes bearing diimine ligands, treatment of the isolated hydride with strong acid does not 

result in H2 evolution. Electrochemical studies reveal that the hydride complex can be reduced 

only at very negative potentials (ca. −2.5 V vs. ferrocenium/ferrocene), resulting in Rh–H bond 

cleavage and H2 generation. These results are discussed in the context of catalytic H2 generation, 

and development of design rules for improved catalysts bearing the [Cp*] ligand.
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Introduction

Metal hydride complexes are important species in organometallic chemistry.1 They are key 

reaction intermediates in many transformations, including hydrogenation of organic 

molecules, olefin polymerization, and the water-gas shift reaction.2 They also attract 

attention in the area of sustainable catalysis, as they are often involved in metal-mediated 

production of H2 from water and reduction of CO2 to more useful chemicals.3 In these 

catalytic cycles, however, metal hydrides are often not isolated or even detected directly—

rather, their proposed involvement as intermediates is inferred from the observed reactivity.

One such catalytic transformation that has recently attracted significant attention is the 

chemical or electrochemical generation of H2 from proton sources that is mediated by 

[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) supported by bidentate chelating 

ligands such as 2,2′-bipyridyl and its substituted derivatives. Originally described by Grätzel 

and Kölle in 1987, this catalyst system is notable for both its ease of preparation from 

common ligands and readily accessible metal precursors and the stability of the isolated 

rhodium(III) precatalysts.4 In cases where catalysis is driven electrochemically, two-electron 

reduction of the rhodium(III) species in the presence of suitably strong acids (e.g., anilinium 

triflate, pKa = 10.6 in CH3CN5) results in quantitative formation of H2 and regeneration of 

the rhodium(III) complex.6 Because of its high efficiency and stability, this catalyst has been 

deployed in a variety of applications, including attachment to electrode surfaces.7,8,9

The mechanism of H2 generation with this catalyst system was originally proposed to 

involve two-electron reduction of the precatalyst to generate a rhodium(I) complex that is 

subsequently protonated to form a [Cp*Rh] hydride species. This hydride complex would 

then undergo protonolysis, thereby generating H2.10 The same hydride intermediate has also 

been proposed to be involved in generation of NADH from NAD+ in related work on 

electrochemically-driven enzymes.11,12 Signals consistent with the presence of a hydride 

under stringent reaction conditions (large excess of sodium formate, Na+[HCOO]−, as 

hydride source) have been observed by proton nuclear magnetic resonance (1H NMR) in the 

case of a catalyst supported by 6,6′-dimethyl-2,2′-bipyridyl.13 The analogous [Cp*Ir] 
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hydride is well known, and has even been crystallographically characterized, lending 

credence to the possibility of the involvement of an analogous species in the chemistry of 

[Cp*Rh] complexes.14 Nonetheless, despite the proposed involvement of this hydride 

complex in a number of catalytic mechanisms, neither isolation nor complete in situ 
characterization of this compound has been reported; thus, the involvement of alternate 

formulations of this protonated species in catalysis cannot be ruled out.

Interest in the [Cp*Rh] systems has recently been refreshed by reports of the generation of 

η4-pentamethylcyclopentadiene (Cp*H) complexes under several conditions relevant to H2 

evolution catalysis. Miller and coworkers reported that addition of strong acid (HCl, pKa < 

10.30 in CH3CN15) to Cp*Rh(bpy) results in generation of bound [Cp*H];16 we have found 

that the weak acid triethylammonium (pKa = 18.8 in CH3CN5) can be exploited to cleanly 

generate complexes bearing [Cp*H] that can subsequently be isolated and stored in pure 

form on preparative scale (Scheme 1).17,18 Because of the exclusively endo disposition 

(inward, toward the metal center) of the special ring proton of the [Cp*H] ligand, 

involvement of Rh in the protonation of the [Cp*] ligand (e.g. as the initial site of 

protonation) is likely, especially in light of Miller’s observation of hydride formation at low 

temperature followed by [Cp*H] formation upon warming.16 Hydrogen is quantitatively 

evolved from this formally rhodium(I) complex bearing [Cp*H] by addition of strong acid, 

leading to rearomatization of the [Cp*] motif, and suggesting that the protonated ligand 

complex is not an off-cycle intermediate but rather a species that could be active for 

catalysis. This notion is supported by a recent computational study, which highlighted the 

possible protonation pathways in this chemistry and indicated the [Cp*H] species as a lower 

energy form of the protonated compound vs. the [Rh–H] complex.19

As complexes bearing cyclopentadienyl-type ligands are useful in a variety of catalytic 

applications,20 the observation of this reversible [Cp*]-centered protonation is of interest for 

the development of new reactivity manifolds.21,22 For example, Peters and co-workers have 

observed ligand-centered protonation of decamethylcobaltocene under conditions relevant to 

N2 reduction.23 The protonated [Cp*] complexes formed in these systems are tautomers of 

more conventional metal hydrides. Thus, study of isolable [Cp*Rh] hydrides could provide 

further insights into the chemistry of complexes in this broad family.

Upon investigating this line of research, we were encouraged by literature reports showing 

that [Cp*Rh] hydride complexes can be stabilized by use of phosphine ligands. Early work 

from Klingert and Werner showed that treatment of Cp*Rh(PMe3)2 with NH4PF6 affords 

[Cp*Rh(PMe3)2H]+.24 Faller and co-workers later found that an analogous monohydride is 

sufficiently stable for purification by column chromatography.25 This finding is 

complemented by reports of crystallographic characterization of rhodium hydride 

compounds stabilized by phosphine ligands but not ligated by [Cp*],26 as well as a more 

recent report of a crystallographically characterized [Cp*FeII] complex stabilized by 

phosphine ligands.27 In another key study of interest here, Faraone and co-workers 

demonstrated preparation of a diphosphine-ligated [CpRh] hydride, although no structural 

data were collected and the hydride ligand could not be detected by 1H NMR.28 Other work 

from Klingert and Werner includes studies of Rh complexes with bridging PMe3 ligands.
29,30 Jones has studied the properties of dihydride monophosphine [Cp*Rh] complexes.31,32 
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Lluch, Lledós, and Heinekey investigated a related [Cp*Ir] dihydride with a chelating 

phosphine ligand, and showed that one [H] ligand was sufficiently hydridic to evolve H2 by 

reaction with trace water.33 However, we are unaware of prior studies of the electrochemical 

properties of [Cp*Rh] hydride complexes. Such work would complement studies examining 

reduction of analogous diphosphine [Cp*Rh] complexes without hydride ligands,10 work 

with analogous half-sandwich cobalt complexes,34 and quite recent work from Collomb and 

co-workers that examined electrochemical H2 generation pathways in rhodium 

poly(bipyridyl) complexes.35

Here, we describe the isolation and study of a [Cp*Rh] monohydride supported by the 

bidentate chelate ligand bis(diphenyl)phosphino benzene (dppb). The new complex 

Cp*Rh(dppb) (2) reacts with one or more equivalents of acid to cleanly afford the hydride 

complex [Cp*Rh(dppb)H]+OTf− (3). Electrochemical studies show that this compound is 

reduced at −2.32 V versus the ferrocenium/ferrocene couple (denoted hereafter Fc+/0), 

giving rise to H2. Treatment with excess strong acid, in the form of protonated 

dimethylformamide ([DMFH]+, pKa = 6.1 in CH3CN5), does not result in hydrogen 

evolution, even though evolution of hydrogen would be exothermic by 17 kcal/mol based on 

the electrochemical work. These results are discussed in the context of developing design 

rules for new catalysts built on the [Cp*Rh] platform.

Results and Discussion

Synthesis of complexes

In order to prepare and study the properties of a monomeric [Cp*Rh] hydride, we selected 

the bidentate bis(diphenylphosphino)benzene ligand (dppb). This ligand is attractive because 

it typically binds to a single metal center, forming a relatively stable five-membered chelate 

ring. [Cp*Rh] complexes bearing bidentate chelating ligands are readily accessible from the 

versatile, dimeric [Cp*RhCl2]2 precursor.36 Here, addition of 2 equiv. of dppb followed by 2 

equiv. of AgPF6 to 1 equiv. of [Cp*RhCl2]2 results in formation of the rhodium(III) complex 

1 in high yield, along with precipitation of AgCl (Scheme 2).37

Vapor diffusion of ether into a concentrated THF solution of 1 yielded orange crystals 

suitable for single-crystal X-ray diffraction (XRD) studies. The geometry at the formally 

rhodium(III) center in 1 is pseudo-octahedral, with a first coordination sphere around the 

metal center containing [Cp*], the expected κ2-dppb, and a single bound chloride anion 

(Figure 1). The dppb is forced downward—in the structure of 1, the angle between the plane 

containing the [Cp*] ligand and the plane containing Rh, P1, and P2 is 66°; in the analogous 

[Cp*Rh(bpy)Cl]+ complex,38 the angle between the [Cp*] plane and the plane containing Rh 

and the bound nitrogen atoms is 59°. This suggests that the steric bulk of the dppb 

framework has a substantial effect on the geometry of the interaction between the bidentate 

ligand and the [Cp*Rh] motif. We therefore turned to electrochemical methods to establish 

whether this influence extends to the electronic properties of this species.

The first cathodic sweep of a cyclic voltammogram (CV) of 1 beginning near −0.3 V 

displays an initial reduction event centered at −0.85 V vs. Fc+/0 (Figure 2, upper panel). The 

peak-to-peak separation of the cathodic and anodic waves is significant (ca. 300 mV), 
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suggesting a chemical reaction occurs upon reduction. Furthermore, synthetic work (vide 

infra) and comparison of peak areas in a solution containing a 1:2 mixture of 1 and ferrocene 

suggests that the reduction of 1 involves transfer of two electrons (Figure S17). This agrees 

well with prior work on [Cp*Rh] diimine complexes, which typically undergo 2e− reduction 

near −1.0 V vs. Fc+/0.6,10,39 Indeed, the reduction event for 1 displays the typical profile of 

an ECE mechanism, in which an initial electrochemical reduction is followed by a chemical 

reaction (here, a structural rearrangement upon loss of bound chloride) that generates a 

complex with a more positive reduction potential (i.e., [Cp*RhII(dppb)]+). Therefore, a 

second electron is immediately transferred following the first. A similar profile for this 2e− 

reduction is observed in voltammetry across a range of scan rates (see Figure S18 in SI), 

suggesting that the coupled chemical reactions are reasonably fast on the timescale of 

voltammetry. The observed peak currents for both the reduction and oxidation events vary 

linearly with the square root of scan rate, confirming both the oxidized and reduced forms of 

1 are soluble and freely diffusing (Figure S18). Notably, we observed no further reductions 

with 1 within the limit of our conditions, down to potentials around −2.5 V (Figure S19, 

lower panel, in SI).

In the second and subsequent cycles of voltammetry, a new reductive feature appears at 

slightly more positive potential than the dominant reduction wave (See Figures S18 and S19 

in the SI). Specifically, a small new reductive wave appears with Ep,c = −0.82 V. The 

appearance of this wave upon multiple cycling is consistent with initial reduction of 1 
(virtually all chloride-bound when dissolved in the electrolyte solution) by two electrons to 

form 2 (Scheme 2). Subsequent re-oxidation and ligand coordination can result in two 

possible products, chloride-bound 1 or the analogous solvento complex, [Cp*Rh(dppb)

(NCMe)]2+. The small, additional reductive wave thus corresponds to two-electron reduction 

of [Cp*Rh(dppb)(NCMe)]2+ to form 2. The shift in reduction potential for the solvento 

species is consistent with analogous observations in bpy-supported Co, Rh, and Ir systems.40

This electrochemical response is reminiscent of that of [Cp*Rh] complexes bearing bpy or 

related 4,4′-disubstituted 2,2′-bipyridyl ligands.6,41 In the case of the parent bpy system, a 

single 2e−, ECE-type reduction event gives rise to a five-coordinate 18e− species.4 The five-

coordinate complex Cp*Rh(bpy) has been chemically prepared and structurally 

characterized, confirming its identity as the product of reduction of the rhodium(III) starting 

material. Notably, this formally rhodium(I) complex displays significant delocalization of 

electron density into the π-system of the bpy ligand, as judged by single-crystal XRD and 

UV-visible spectroscopy.42

In accord with the two-electron reduction of 1 observed by cyclic voltammetry, treatment of 

a THF suspension of 1 with sodium amalgam (E° ≈ −2.4 V43, 10 equiv.) results in 

generation of 2. Over the course of the reaction, the solution darkens considerably in color. 

Following work-up and extraction with hexanes, diamagnetic 2 can be isolated in pure form. 

Characterization of 2 by 1H NMR (Figure S6) indicates retention of both the [Cp*] and dppb 

ligands, as the 15 equivalent protons of the freely rotating [Cp*] ring show coupling to the 

two equivalent bound phosphorus atoms (3JH,P = 1.8 Hz), similar to data collected for 1 
(3JH,P = 3.4 Hz). 31P{1H} NMR spectra support assignment of reduction of the rhodium 

metal center; 1JP,Rh increases from 131 Hz in 1 to 220 Hz in 2, in accord with formation of a 
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more electron-rich rhodium center (Figure 3) which can engage in backdonation to the π-

acidic phosphine ligands. The phosphine resonances also shift downfield (ca. 9 ppm) upon 

reduction. Crystals of this complex suitable for XRD studies could not be obtained due to 

the high solubility of this species in most organic solvents. However, as the 1H NMR does 

not indicate the presence of additional ligands bound to the Rh center, we conclude that this 

complex, similar to Cp*Rh(bpy), is a five-coordinate, 18e− complex.

Cyclic voltammetry data obtained with isolated 2 confirm that this compound is the product 

of electrochemical reduction of 1 (Figure 2, lower panel). Starting the initial anodic sweep 

from reducing potentials, we observe a sole oxidation wave (Ep,a = −0.73 V) coupled to a 

sole reduction wave (Ep,c = −0.82 V). This two-electron event is centered at −0.78 V vs. Fc
+/0, slightly more positive than the rhodium(III/I) couple measured for the chloride-

containing starting material 1 (Figure 2, upper panel). This is consistent with generation of 

the more oxidizing [Cp*Rh(dppb)(NCMe)]2+ upon 2e− oxidation of 2. Similarly, the 

reduction wave measured for this solvento complex generated from 2 in situ (Figure S18) is 

shifted positive from the reduction wave measured for chloride-bound 1. Scan rate-

dependent studies confirm that 2, and its oxidation product [Cp*Rh(dppb)(NCMe)]2+, are 

freely diffusing, soluble species (Figure S20).

With 2 in hand, we explored the possibility of generating a hydride species by treatment of 2 
with acid. For the analogous Cp*Rh(bpy) system, treatment with triethylammonium bromide 

(pKa = 18.8 in CH3CN5) results in generation of the isolable (Cp*H)Rh(bpy)Br complex.18 

However, as 2 has a more positive reduction potential than Cp*Rh(bpy), we targeted the 

stronger acid anilinium triflate (pKa = 10.6 in MeCN5) for generation of a singly-protonated 

complex.44 Indeed, treatment of 2 in MeCN with 1.0 equiv. of anilinium triflate results in a 

visible lightening of the solution without formation of a visible precipitate. Following work 

up, 1H NMR reveals a distinctive new signal at −11.8 ppm consistent with formation of a 

metal hydride species (3; see Figure S10). This signal appears as a quartet (rather than the 

expected doublet of triplets or triplet of doublets) due to an apparent coincidental similarity 

in the H,Rh and H,P coupling constants (i.e., 1JH,Rh ≈ 2JH,P ≈ 29 Hz). Importantly, whereas 

proton transfer to [Cp*] in [(Cp*H)Rh(bpy)]+ results in three inequivalent methyl 

resonances in its 1H NMR spectrum (a doublet and two singlets are observed),16,17 a single 

resonance for the [Cp*] protons is present in data for 3 (Figure S10), excluding generation of 

any [Cp*H] species or free pentamethylcyclopentadiene. 31P{1H} spectra of 3 (see Figures 3 

and S13) confirm formation of a new complex–a lone doublet at 67.9 ppm (1JP,Rh = 138 Hz) 

is observed, consistent with a rhodium(III) species. (See SI for additional NMR spectra 

related to characterization of 3.) In accord with all these data, the infrared spectrum of 3 
shows a distinctive [Rh–H] stretch at 1986 cm−1 (see Figure S28 in SI).

Vapor diffusion of diethyl ether into a concentrated solution of 3 in THF yielded small light-

yellow crystals suitable for XRD studies. The geometry at the formally rhodium(III) metal 

center is again pseudo-octahedral, with dppb retained in the κ2 mode and [Cp*] bound in the 

typical η5 mode. (Figure 4). [Cp*] is planar, indicating that it retains its aromatic nature and 

no [Cp*H] material has formed. Gratifyingly, the hydride ligand (H17) was located in the 

Fourier difference map, and its position was freely refined. H17 is bound to the rhodium 

center, confirming the generation of a metal hydride moiety.45
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Chemical Properties of the [Cp*Rh] Hydride

As discussed above, treatment of the isolated protonated species [(Cp*H)Rh(bpy)]+ with 

strong acid ([DMFH]+[OTf]−) results in rapid generation of H2 concurrent with a color 

change indicative of consumption of the Rh(I) species and generation of [Cp*Rh(bpy)]2+.18 

In the case of 3, however, addition of [DMFH]+[OTf]− does not lead to any detectable 

reactivity over 48 h as determined by 1H NMR spectroscopy (Figure 5). Heating such a 

sample at 50°C overnight also does not lead to reactivity. The resistance of 3 to protonolysis 

(H2 evolution by direct protonation) even by strong H+ sources highlights stability of this 

protonated species as compared to that of [(Cp*H)Rh(bpy)]+. Storage of the first H+ 

equivalent on the [Cp*] ring, evidently enabled by bpy but disfavored by dppb, appears to 

promote further reaction with H+ to generate H2.

The stability of 3 towards H+ sources is reminiscent of that of analogous [Rh–CH3] 

complexes supported by [Cp*] and bpy that we have recently studied.39 These rhodium–

methyl species can be dissolved in neat methanol (MeOH) without detectable protonolysis 

of the CH3 ligand. However, these complexes are susceptible to reaction with stronger H+ 

sources (e.g., [DMFH]+[OTf]−) leading to generation of CH4.40 It has been noted that Rh–C 

bonds can be quite strong,46 but prior observations suggest that M–H bonds tend to be 

stronger than their M–C analogues.47

Calculation of the difference between the estimated thermodynamic potential required for 

H2 evolution with [DMFH]+[OTf]− (Eo′(H+/H2) = −0.389 V)43 and the reducing power of 

the Cp*Rh(dppb) complex (E1/2(RhIII/RhI) = −0.78 V) reveals that H2 evolution would be 

substantially exergonic, with a driving force of ca. 17 kcal mol−1.44,48,49 Therefore, the 

inability of the dppb-supported system to generate H2 even in the presence of excess 

[DMFH]+[OTf]− could provide insight into the mechanism of H2 evolution by other 

[Cp*Rh] species. Complexes containing diimine ligands are competent electrocatalysts for 

H2 evolution; we have recently reported that introduction of substituents on the bpy 

framework affects the catalytic performance but leads to observation of [Cp*H] species as 

the primary product of protonation of the respective Rh(I) complexes, analogously to the 

parent bpy system.6

In terms of the potential required for charging of the catalyst with the required reducing 

equivalents, the Cp*Rh(diimine) complexes in our previous studies6 are more potent 

reducing agents (E1/2(RhIII/RhI) ≤ −0.97 V) than 2 (E1/2(RhIII/RhI)= −0.78 V). Although 

this factor may contribute to the lack of catalysis with 2, it should be noted that the 

overpotential for the H2 evolution from 2 with [DMFH]+ as acid is essentially equivalent (η 
≈ 0.38 V) to that for H2 evolution from Cp*Rh(bpy) with anlinium as proton source. This 

observation suggests that the differences in the observed catalytic performance of these two 

systems could arise from changes in their chemical reactivity (e.g., protonation at the metal 

vs. on the Cp* ligand), rather than simply from their differing reducing power.

However, we have recently observed partial formation of Rh–H species with diimine-based 

complexes by 1H NMR spectroscopy. Specifically, we observe minor hydride signals in situ 
when we treat Rh(I) starting materials (e.g., Cp*Rh(Rbpy), Rbpy = 4,4’-R2-bpy, R = tBu, H, 

CF3) with [C6H5NH3]+ (anilinium, pKa = 10.6 in MeCN5) as proton source; upfield 
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resonances around −9 ppm (see Figure S15 in SI) are indicative of Rh–H moieties; these 

signals are similar to those in prior reports of a hydride detected at low temperature16 and 

another under aqueous conditions.13 Observation of hydride species in the presence of 

anilinium/aniline suggests that an external proton transfer mediator may lower a kinetic 

barrier for interconversion of the two tautomers (i.e., [(Cp*H)RhI] and [Cp*RhIII–H]). Our 

prior computational study found a low-lying transition state to transfer [H] from Rh to the 

Cp* ring (the [Cp*H] complex being the lower energy structure in comparison to the 

analogous [RhIII–H]), although involvement of H-bond donors and acceptors in metal-to-

ring or ring-to-metal [H] transfer remains to be further explored.19 In the case of 

experiments involving anilinium/aniline, the presence of additional protons on the conjugate 

base (cf., Et3N in prior modeling studies19) could facilitate simultaneous proton transfer to 

and from the base, complicating study of equilibria with this stronger acid. Further 

discernment of the thermochemical parameters and kinetic barriers involved in evolution of 

H2 from [Cp*Rh] complexes bearing diimine ligands thus remains of interest.

Comparisons between the speciation profile and subsequent reactivity of the Cp*Rh(Rbpy) 

systems and of the present dppb-supported complex may shed light upon the possible 

mechanisms of H2 evolution in this family of catalysts. Upon protonation of Rh(I) 

complexes supported by tBubpy and Hbpy, both competent H2 evolution catalysts at their 

respective Rh(III/I) couples, hydride signals are observed in the presence of aniline/

anilinium (Figure S15). On the other hand, protonation of the Rh(I) complex supported by 
CF3bpy does not give rise to any detectable hydride species; this system is also a poor 

catalyst at the potential of its Rh(III/I) couple, and only displays appreciable catalysis upon 

further reduction.6 In the present system supported by the dppb ligand, hydride complex 3 is 

the only product of protonation of the corresponding Rh(I) species 2 (i.e., no (Cp*H)-

containing species are observed) and the system is not a catalyst for H2 evolution. Notably, 

the two sets of complexes that display a single product upon protonation also display 

attenuated (or completely absent) catalysis at their respective Rh(III/I) couples. These 

observations are in good agreement with the results of computational studies on the 

mechanism of proton transfer in these systems, which implicated acid-dependent 

mechanisms of H2 evolution via intermediates in which the first H+ equivalent delivered 

“bridges” between the metal center and the [Cp*] ring.19

Within this paradigm, the ability of the protonated species to access “bridging” states 

between the [(Cp*H)Rh] and [Rh–H] extremes appears to be key to promoting catalytic 

behavior. Excessive stabilization of either motif ([(Cp*H)Rh] by CF3bpy, [Rh–H] by dppb) 

introduces a barrier to further reactivity that cannot be overcome under the conditions 

studied. Thus, by tuning the relative (differential) basicity of the two sites that can be 

involved in proton transfer (the Rh center and the [Cp*] ring), the supporting bidentate 

ligands (bpy, dppb) play a key role in directing reactivity along distinct manifolds. The stark 

contrast between the robust catalysis of select Cp*Rh(diimine) complexes and the inertness 

of Cp*Rh(dppb) toward H2 evolution suggests that a design rule for catalysis of small-

molecule transformations with [Cp*Rh] complexes could be a requirement for enabling 

access to both [Cp*H] intermediates and Rh–H complexes rather than strong stabilization of 

one of these forms over the other.
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Electrochemical Properties of the [Cp*Rh] Hydride

Having observed that 3 does not react with even strong acids, we were interested in the 

electrochemical properties of this apparently stable compound. Initially, we moved to 

confirm that there is no electrocatalytic generation of H2 driven by formation of the RhIII–H 

species (3). For example, addition of [C6H5NH3][OTf] to an electrochemical cell containing 

1 results in loss of reversibility for the 2e− wave observed by cyclic voltammetry (see SI, 

Figure S21). This is consistent with generation of the hydride species 3 in a chemical 

reaction between electrochemically generated 2 and H+. However, there is no catalytic 

enhancement above the electrode background in these studies at relevant potentials, even in 

the presence of excess acid (see SI for details). This result contrasts with our prior work on 

Cp*Rh(diimine) complexes under similar conditions.6

However, interrogation of isolated 3 suggests that further reduction of the hydride complex 

is possible. In the CV of isolated 3, a cathodic wave is observed at −2.34 V vs. Fc+/0, near 

the limit of polarization for our conditions (Figure 6). A small corresponding anodic wave is 

observed at −2.24 V, suggesting that the electrochemical reduction of 3 is followed by a 

chemical reaction (in an EC-type process). In accord with this theory, increasing the 

voltammetric scan rate (see SI, Figure S22) results in improved electrochemical reversibility, 

and suggests an approximate midpoint potential for 1e− reduction of 3 near −2.29 V. The 

peak current for the reduction event varies linearly with the square root of scan rate, in 

accord with the soluble and freely diffusing nature of 3. A new anodic wave, absent during 

the initial scan, appears at Ep,c = −0.73 V after these cathodic scans (Figure 6 and S19). The 

potential for this new process is virtually identical to that for oxidation of Rh(I) complex 2 to 

the corresponding solvento Rh(III) species (Figure 2, lower panel); this observation suggests 

that reduction of 3 leads to partial loss of the hydride ligand and concomitant regeneration of 

the non-protonated species 2.

These results are analogous to the observation of a 1e− reduction event (Ep,c = −1.45 V) in 

the CV of [(Cp*H)Rh(CF3bpy)]2+ (CF3bpy = 4,4’-di(trifluromethyl)-2,2’bipyridine).6 

Reduction of this species can lead to generation of H2 (0.5 equiv per Rh complex) and 

formation of Cp*Rh(CF3bpy), consistent with net formal loss of a hydrogen atom (H•). An 

analogous reduction was observed in [(Cp*H)Rh(bpy)Br] (Ep,c = −1.73 V) and leads to a 

similar H2 evolution pathway; chemical reactivity and bulk electrolysis experiments 

confirmed generation of Cp*Rh(bpy) and H2 upon 1e− reduction of [(Cp*H)Rh(bpy)Br].18 

Thus, we propose that reduction of 3 leads to release of H2 and regeneration of Rh(I) 

complex 2, according to the following equation (eq. 1):

2[Cp∗Rh(dppb)H]+ + 2e− H2 + 2Cp∗Rh(dppb) (eq.1)

To test this hypothesis, we targeted both bulk electrolysis and chemical reduction 

experiments to determine the products of reduction of 3. Controlled potential electrolysis of 

3 was carried out at −2.23 V vs. Fc+/0 (Figure S23) for 1.1 h; headspace analysis by gas 

chromatography (GC) revealed the presence of H2 with a 58% Faradaic yield. The primary 

metal-containing product of the electrolysis was identified as 2 via UV-visible spectroscopy 

(see Figure S25 and further experimental information in SI for details). Similarly, treatment 
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of 3 with 1 equiv of sodium naphthalenide (Na[C8H10], E° = −3.10 V)42 results in a color 

change from light yellow to dark red in seconds, suggesting generation of 2. Headspace 

analysis by GC confirms generation of H2 upon chemical reduction. Consistent with the 

electrochemical work, the primary metal-containing product of the reduction was identified 

as 2 via 31P{1H} NMR spectroscopy (Figure S16).

Thus, despite the resistance of Rh–H complex 3 to protonolysis, generation of H2 from this 

complex can be achieved via 1e− reduction (Figure 7). This process is analogous to the 

catalytic H2 evolution that can be induced by reduction of [Cp*H] complexes supported by 

bpy18 and CF3bpy,6 as well as H2 evolution mechanisms that have been demonstrated for 

cobaloximes,50 [Cp*Ir(bpy)H]+,51 and poly(bipyridyl) rhodium hydrides.35 However, we 

note that the modest Faradaic yield of H2 measured following electrolysis of 3 contrasts with 

the near unity yield encountered in our work with the bpy and CF3bpy complexes. We 

ascribe this diminished efficiency to side reactions that can occur in the case of chemical and 

electrochemical reduction of 3.

The reductions of the rhodium complexes bearing [Cp*H] are centered on the bpy ligands, 

due to the low-lying, delocalized bpy π* orbitals. As a result, these processes occur at 

substantially more positive potentials (−1.73 and −1.45 V, respectively) than the reduction 

measured for 3 (−2.34 V).52 Thus, we propose that the reduction of 3 is likely to be metal-

centered, leading to generation of a reactive (transient) RhII–H complex that could undergo 

Rh–H bond homolysis or protonolysis by an exogenous H+ source. The notion of a transient 

RhII complex is consistent with the appearance of a small anodic wave (Ep,a = −2.24 V) 

coupled to reduction of 3 (see Figure 6). For comparison, the free dppb ligand is reduced at a 

more negative potential,53 while other metal complexes of dppb do not manifest ligand-

centered reductions at relevant potentials.54,55 Our proposal is also consistent with 

electrochemical studies of the related [Cp*Rh(bpy)Me]+ complex which undergoes both 

quasi-reversible diimine-centered reduction (E1/2 = −1.78 V) and metal-centered reduction 

(Ep,c = −2.22 V), as demonstrated by chemical and spectroscopic studies.40 And, although 

we have not investigated the mechanism of H2 generation from this system further, we note 

that a bimolecular pathway leading to H2 generation with 3 via bond homolysis of a 

transient [RhII–H] species would be reminiscent of Wayland’s generation of [RhIII–H]2 

species by treatment of bimetallic [RhII
2] complexes with H2.56

Conclusions

The rhodium half-sandwich complex Cp*Rh(dppb) reacts with acid to form an isolable 

monohydride, [Cp*Rh(dppb)H]+OTf−. There is no evidence of generation of coordinated 

pentamethylcyclopentadiene, [Cp*H], or free Cp*H, under these conditions, in accord with 

formation of a Rh–H bond. This interaction is apparently quite stable, as the hydride 

complex is not protonated by the strong acid DMFH+ to yield H2 over 48 h of monitoring by 

NMR. However, the isolated hydride undergoes reduction at −2.34 V, leading to generation 

of H2 and formation of Cp*Rh(dppb). Taken together, these studies suggest that [Cp*RhIII] 

hydride complexes can be remarkably stable species. Because of the observed formation of 

[Cp*H] upon protonation of analogous [Cp*Rh] diimine complexes, a possible design rule 

for improved catalysis involving proton-driven transformations may be use of ligands that 
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enable ligand-centered protonation. Our ongoing work is examining use of this strategy to 

promote new reactivity with these robust and useful compounds.

Experimental Section

General Considerations

All manipulations were carried out in dry N2-filled gloveboxes (Vacuum Atmospheres Co., 

Hawthorne, CA) or under N2 atmosphere using standard Schlenk techniques unless 

otherwise noted. All solvents were of commercial grade and dried over activated alumina 

using a PPT Glass Contour (Nashua, NH) solvent purification system prior to use, and were 

stored over molecular sieves. All chemicals were from major commercial suppliers and used 

as received after extensive drying. [Cp*RhCl2]2 was prepared according to the literature 

procedure.36 Deuterated NMR solvents were purchased from Cambridge Isotope 

Laboratories; CD3CN was dried over CaH2 and C6D6 was dried over sodium/benzophenone. 
1H, 13C, 19F, and 31P NMR spectra were collected on 400 or 500 MHz Bruker spectrometers 

and referenced to the residual protio-solvent signal57 in the case of 1H and 13C. 

Heteronuclear NMR spectra were referenced to the appropriate external standard following 

the recommended scale based on ratios of absolute frequencies (Ξ).58,59 19F NMR spectra 

are reported relative to CCl3F, and 31P NMR spectra are reported relative to H3PO4. 

Chemical shifts (δ) are reported in units of ppm and coupling constants (J) are reported in 

Hz. Electronic absorption spectra were collected with an Ocean Optics Flame spectrometer, 

in a 1-cm pathlength quartz cuvette. Elemental analyses were performed by Midwest 

Microlab, Inc. (Indianapolis, IN).

Electrochemistry

Electrochemical experiments were carried out in a nitrogen-filled glovebox. 0.10 M tetra(n-

butylammonium) hexafluorophosphate (Sigma-Aldrich; electrochemical grade) in 

acetonitrile served as the supporting electrolyte. Measurements were made with a Gamry 

Reference 600 Plus Potentiostat/Galvanostat using a standard three-electrode configuration. 

The working electrode was the basal plane of highly oriented pyrolytic graphite (HOPG) 

(GraphiteStore.com, Buffalo Grove, Ill.; surface area: 0.09 cm2), the counter electrode was a 

platinum wire (Kurt J. Lesker, Jefferson Hills, PA; 99.99%, 0.5 mm diameter), and a silver 

wire immersed in electrolyte served as a pseudo-reference electrode (CH Instruments). The 

reference was separated from the working solution by a Vycor frit (Bioanalytical Systems, 

Inc.). Ferrocene (Sigma Aldrich; twice-sublimed) was added to the electrolyte solution at the 

conclusion of each experiment (~1 mM); the midpoint potential of the ferrocenium/

ferrocene couple (denoted as Fc+/0) served as an external standard for comparison of the 

recorded potentials. Concentrations of analyte for cyclic voltammetry were typically 1 mM.

Synthetic Procedures

Synthesis of 1.—To a suspension of [Cp*RhCl2]2 in CH2Cl2 (0.0678 g, 0.109 mmol) 

were added dppb (0.1004 g, 0.224 mmol, 2.05 equiv) and AgPF6 (0.0552 g, 0.219 mmol, 2 

equiv) as CH2Cl2 solutions. The color of the reaction mixture rapidly changed from brick-

red to orange, and a colorless precipitate formed. After 15 min, the suspension was filtered 

to remove the AgCl byproduct, and the volume of the filtrate was reduced to ~1 mL. 
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Addition of Et2O (~20 mL) caused precipitation of a yellow solid, which was collected by 

filtration. Pure material was obtained via crystallization by vapor diffusion of Et2O into a 

concentrated THF solution of the title compound (0.149 g, 78%). The same strategy was 

employed to obtain single-crystals suitable for X-ray diffraction studies. 1H NMR (500 

MHz, CD3CN) δ 7.82 (m, 4H, H8), 7.77 (m, 2H, H12), 7.72 (t, J = 7.9 Hz, 2H, H10), 7.64 

(m, 2H, H13), 7.61 (t, J = 7.6 Hz, 4H, H9), 7.53 (t, J = 7.57 Hz, 2H, H6), 7.29 (td, J = 8.0, 

1.8 Hz, 4H, H5), 6.91 (ddt, J = 9.5, 6.2, 1.4 Hz, 4H, H4), 1.56 (t, J = 3.4 Hz, 15H, H1) ppm. 
13C{1H} NMR (126 MHz, CD3CN) δ 134.27 (t, J = 5.31 Hz, C8), 132.52 (t, J = 5.8 Hz, 

C4), 131.67 (m), 131.48 (m), 131.2 (m), 128.07 (t, J = 5.7 Hz, C5), 127.73 (t, J = 6.0 Hz, 

C9), 104.39 (dt, J = 5.6, 2.7 Hz, C2), 7.91 (m, C1) ppm. 19F NMR (376 MHz, CD3CN) δ 
−73.77 (d, 1JF,P = 706 Hz) ppm. 31P{1H} NMR (162 MHz, CD3CN) δ 58.32 (d, 1JP,Rh = 

129.9 Hz, dppb), −147.65 (sept, 1JP,F = 706 Hz) ppm. (See Figure S1 in SI showing the 

labeling scheme for the carbon and hydrogen atoms.) Electronic absorption spectrum (THF): 

362 (7,500 M−1 cm−1). Anal. Calcd. for C40H39ClF6P3Rh: C, 55.54; H, 4.55. Found: C, 

54.69; H, 4.59. The low carbon value is attributed to association of water, which is 

consistent with the presence of water in the 1H NMR spectrum of 1.

Synthesis of 2.—A suspension of 1 in THF (0.1022 g, 0.118 mmol) was stirred over 

freshly prepared sodium-mercury amalgam (1% Na in Hg; 0.0273 g Na0, 1.18 mmol, 10 

equiv) for 24 hours, during which time the yellow suspension became a dark red 

homogeneous solution. The mixture was filtered and the volatiles removed in vacuo. 

Extraction with Et2O and removal of the volatiles in vacuo provides the title compound as a 

dark red solid (0.0690 g, 85%). 1H NMR (400 MHz, C6D6) δ 7.81 (m, 8H), 7.54 (m, 2H), 

7.14 (t, J = 7.39 Hz, 8H, overlaps with solvent residual), 7.06 (t, J = 6.61 Hz, 4H), 6.82 (m, 

2H), 1.79 (t, J = 1.8 Hz, 15H, Cp*) ppm. 13C NMR (126 MHz, C6D6) δ 149.63 (td, J = 

46.78, 3.46 Hz), 138.75 (t, J = 18.67 Hz), 133.37 (t, J = 6.5 Hz), 130.27 (t, J = 9.1 Hz), 

129.10, 128.75, 127.52 (obscured by solvent peak), 96.06 (m), 10.84 ppm. 31P NMR (162 

MHz, C6D6) δ 76.63 (d, 1JP,Rh = 219.5 Hz) ppm. 31P{1H} NMR (162 MHz, C6D6) δ 76.63 

(d, 1JP,Rh = 220.0 Hz) ppm. Electronic absorption spectrum (THF): 393 (4,800), 478 (2,500 

M−1 cm−1).

Synthesis of 3.—A solution of anilinium triflate in thawing MeCN (0.0272 g, 0.112 

mmol, 1 equiv) was added dropwise to a solution of 2 in THF (0.0765 g, 0.112 mmol). The 

solution became light yellow immediately. Volatiles were removed in vacuo. Washing with 

hexanes, Et2O, and toluene followed by extraction with THF and removal of volatiles 

yielded the title compound as a light-yellow solid (0.0812 g, 87%). Single-crystals suitable 

for X-ray diffraction studies were obtained by vapor diffusion of Et2O into a THF solution 

of the title compound. 1H NMR (400 MHz, CD3CN) δ 7.71–7.57 (m, 12H), 7.54–7.48 (m, 

4H), 7.38 (td, J = 7.9, 1.9 Hz, 4H), 7.15 (ddt, J = 11.8, 8.0, 1.4 Hz, 4H), 1.58 (td, J = 2.9, 1.1 

Hz, 15H), −11.78 (q, J = 29.2 Hz, 1H, hydride) ppm. 13C{1H} NMR (126 MHz, CD3CN) δ 
132.38 (t, J = 6.2 Hz), 131.98 (t, J = 6.3 Hz), 131.18 (m), 130.99 (m), 130.77 (m), 130.48 (t, 

J = 9.2 Hz), 128.30 (t, J = 6.0 Hz), 128.00 (t, J = 5.7 Hz), 101.57 (dt, J = 4.6, 2.4 Hz, Rh–

C5(CH3)5), 8.16 (s, Rh–C5(CH3)5) ppm. 19F NMR (376 MHz, CD3CN) δ −80.21 (s) ppm. 
31P{1H} NMR (162 MHz, CD3CN) δ 67.12 (d, 1JP,Rh = 137.8 Hz). Electronic absorption 

spectrum (THF): 305 (15,900 M−1 cm−1). Anal. Calcd. for C41H40O3F3P2SRh: C, 59.00; H, 
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4.84. Found: C, 59.70; H, 4.94. The high carbon value is attributed to association of THF, 

which is consistent with the presence of THF in the 1H NMR spectrum of 3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

Electrochemical reduction of a [Cp*Rh] hydride leads to H2 evolution, whereas direct 

protonolysis does not, providing new insight into the redox-promoted reactivity of half-

sandwich rhodium complexes.
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Figure 1. 
Crystal structure of 1. H atoms, PF6 counteranion, and terminal phenyl groups omitted for 

clarity.
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Figure 2. 
Cyclic voltammetry of 1 (upper panel, 1 mM) and 2 (lower panel, 1 mM). Electrolyte: 0.1 M 

TBAPF6 in MeCN, scan rate: 100 mV/s, electrode: highly oriented pyrolytic graphite. The 

initial potential of the voltammogram of 1 (upper panel) is at ca. −0.30 V, and the initial 

potential of the voltammogram of 2 (lower panel) is at ca. −1.2 V.
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Figure 3. 
31P{1H} NMR (162 MHz) of 1 (top, CD3CN, 1JP,Rh = 131 Hz), 2 (middle, C6D6, 1JP,Rh = 

220 Hz), and 3 (bottom, CD3CN, 1JP,Rh = 138 Hz).
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Figure 4. 
Crystal structure of 3. All H atoms not bound to Rh, outer-sphere triflate counteranion, and 

terminal phenyl groups omitted for clarity.

Boyd et al. Page 21

Inorg Chem. Author manuscript; available in PMC 2020 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Partial 1H NMR spectra of a 1:1 mixture of 3 and [DMFH][OTf] in CD3CN after 15 min 

(lower panel), 24 hrs (middle), and 48 hrs (upper).
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Figure 6. 
Red: Cyclic voltammetry of 2 (red, 1 mM), 3 (blue, 1 mM), and a blank (dashed). 

Electrolyte: 0.1 M TBAPF6 in MeCN, scan rate: 100 mV/s, electrode: highly oriented 

pyrolytic graphite. The initial potentials of the voltammograms are as follows: for 2, −1.2 V; 

for 3, −0.30 V; for the blank, 0 V.
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Figure 7. 
H2 evolution chemistry with the Cp*Rh(dppb) platform. Dashed arrows indicate an inactive 

pathway for H2 production involving protonolysis of hydride 3.
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Scheme 1. 
H2 evolution catalyzed by Cp*Rh(bpy). L = halide or coordinated solvent (e.g., MeCN).

Boyd et al. Page 25

Inorg Chem. Author manuscript; available in PMC 2020 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Preparation of Cp*Rh complexes.
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