11,014 research outputs found
Life History Aspects of \u3ci\u3eAnthopotamus Verticis\u3c/i\u3e (Ephemeroptera: Potamanthidae)
The study of the larval development and life cycle of a population of the mayfly Anthopotamus verticis from the Tippecanoe River, Indiana was based on monthly and weekly sampling in 1990 and 1991. Larval head width and tusk length were directly correlated with body size; whereas wingpad development represented an exponential relationship with body size. Relative maturation of larvae was efficiently assessed, however. by using wingpad development. The morphology of eggs is described. Larval growth and development took place mainly from March to Au~st. Although emergence is protracted from mid-July to mid-August, the major recruitment of new larvae occurred in August. Only one cohort was ascertained. The species overwinters as mostly young larvae. The simple univoltine life cycle appears to be related to seasonal temperature
Neutron and muon-induced background studies for the AMoRE double-beta decay experiment
AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search
a neutrinoless double-beta decay of Mo in molybdate crystals. The
neutron and muon-induced backgrounds are crucial to obtain the zero-background
level (< counts/(keVkgyr)) for the AMoRE-II experiment,
which is the second phase of the AMoRE project, planned to run at YEMI
underground laboratory. To evaluate the effects of neutron and muon-induced
backgrounds, we performed Geant4 Monte Carlo simulations and studied a
shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds
were also included in the study. In this paper, we estimated the background
level in the presence of possible shielding structures, which meet the
background requirement for the AMoRE-II experiment
Coarsening model of cavity nucleation and thin film delamination from single-crystal BaTiO3 with proton implantation
The layer splitting mechanism of a proton implanted single crystal ferroelectric BaTiO3 thin film layer from its bulk BaTiO3 substrate has been investigated. The single crystal BaTiO3 thin film layer splits as the hydrogen gas diffuses and the internal cavity pressure increases. Ripening mechanism driven by the pressurized hydrogen in the implantation-induced damage zone makes coarsening of the cavities and causes the delamination of the thin layer during the annealing. A unique criterion relation of blister nucleation and evolution has been derived and a simplified debonding criterion is proposed in terms of dimensionless parameters based on the force equilibrium condition. A numerical simulation of two-bubble evolution and delamination of thin film is performed using a finite element method
An Efficient and Accurate Building Optimization Strategy Using Singular Value Decomposition
Optimizing the life cycle cost of a building typically involves a large number of variables due to the many options that exist at the time that a building is being designed. Such large-scale optimization problems are often prohibitive within the building industry because of the excessive computational time required by the building energy modeling software; therefore, any optimization studies that are performed during a building design are typically only completed using a small number of variables. To achieve the goal of performing a full life cycle building optimization in an acceptable time frame, this paper proposes an accurate and efficient method using singular value decomposition on the design variables. Through the use of singular value decomposition a large number of design variables can be reduced to a smaller subset of design variables that can be solved more quickly by the optimization algorithm. In this paper the authors apply the singular value decomposition method to a case study of a typical residential building in six separate locations across the U.S. and compare the results with those of the full optimization process over the entire design space
Integrally Cored Ceramic Mold Fabricated by Ceramic Stereolithography
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88025/1/j.1744-7402.2010.02568.x.pd
Secrecy content of two-qubit states
We analyze the set of two-qubit states from which a secret key can be
extracted by single-copy measurements plus classical processing of the
outcomes. We introduce a key distillation protocol and give the corresponding
necessary and sufficient condition for positive key extraction. Our results
imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66},
060302 (2002), for a secure key distribution using the six-state scheme is
tight. Remarkably, an optimal eavesdropping attack against this protocol does
not require any coherent quantum operation.Comment: 5 pages, RevTe
- âŠ