16,845 research outputs found

    Length control of microtubules by depolymerizing motor proteins

    Get PDF
    In many intracellular processes, the length distribution of microtubules is controlled by depolymerizing motor proteins. Experiments have shown that, following non-specific binding to the surface of a microtubule, depolymerizers are transported to the microtubule tip(s) by diffusion or directed walk and, then, depolymerize the microtubule from the tip(s) after accumulating there. We develop a quantitative model to study the depolymerizing action of such a generic motor protein, and its possible effects on the length distribution of microtubules. We show that, when the motor protein concentration in solution exceeds a critical value, a steady state is reached where the length distribution is, in general, non-monotonic with a single peak. However, for highly processive motors and large motor densities, this distribution effectively becomes an exponential decay. Our findings suggest that such motor proteins may be selectively used by the cell to ensure precise control of MT lengths. The model is also used to analyze experimental observations of motor-induced depolymerization.Comment: Added section with figures and significantly expanded text, current version to appear in Europhys. Let

    An objective method for forecasting tropical cyclone intensity and motion using Nimbus-5 ESMR measurements and non-satellite derived descriptors

    Get PDF
    An empirical analysis program, based on finding an optimal representation of the data was applied to 120 observations of 29 1973 and 1974 North Pacific tropical cyclones. Each observation consists of a field of Nimbus-5 Electrically Scanning Microwave Radiometer radiation measurements at 267 grid points covering and surrounding the tropical cyclone plus nine other non-satellite derived discriptors. Forecast algorithms to estimate storm intensity and motion at 12, 24, 48, and 72 hours after each observation were developed using an independent eigen screening analysis. These algorithms were based on best track data. Independent testing of these algorithms showed that the performance of most of these algorithms were better than persistence and the algorithms forecasting 24, 48, and 72 hour maximum wind speed were better than those made operationally by the Joint Typhoon Warning Center for 1973 and 1974 that did not use best track data

    Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel

    Get PDF
    A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system

    Stabilization of colloidal suspensions by means of highly-charged nanoparticles

    Full text link
    We employ a novel Monte Carlo simulation scheme to elucidate the stabilization of neutral colloidal microspheres by means of highly-charged nanoparticles [V. Tohver et al., Proc. Natl. Acad. Sci. U.S.A. 98, 8950 (2001)]. In accordance with the experimental observations, we find that small nanoparticle concentrations induce an effective repulsion that prevents gelation caused by the intrinsic van der Waals attraction between colloids. Higher nanoparticle concentrations induce an attractive potential which is, however, qualitatively different from the regular depletion attraction. We also show how colloid-nanoparticle size asymmetry and nanoparticle charge can be used to manipulate the effective interactions.Comment: Accepted for publication in Physical Review Letters. See also S. Karanikas and A.A. Louis, cond-mat/0411279. Updated to synchronize with published versio

    Iridovirus infection of cell cultures from the Diaprepes root weevil, Diaprepes abbreviatus

    Get PDF
    We here report the development and viral infection of a Diaprepes root weevil cell culture. Embryonic tissues of the root weevil were used to establish cell cultures for use in screening viral pathogens as potential biological control agents. Tissues were seeded into a prepared solution of insect medium and kept at a temperature of 24°C. The cell culture had primarily fibroblast-like morphology with some epithelial monolayers. Root weevil cells were successfully infected in vitro Abbreviation: / IIV-6: Invertebrate Iridescent Virus

    The effect of image position on the Independent Components of natural binocular images

    Get PDF
    Human visual performance degrades substantially as the angular distance from the fovea increases. This decrease in performance is found for both binocular and monocular vision. Although analysis of the statistics of natural images has provided significant insights into human visual processing, little research has focused on the statistical content of binocular images at eccentric angles. We applied Independent Component Analysis to rectangular image patches cut from locations within binocular images corresponding to different degrees of eccentricity. The distribution of components learned from the varying locations was examined to determine how these distributions varied across eccentricity. We found a general trend towards a broader spread of horizontal and vertical position disparity tunings in eccentric regions compared to the fovea, with the horizontal spread more pronounced than the vertical spread. Eccentric locations above the centroid show a strong bias towards far-tuned components, eccentric locations below the centroid show a strong bias towards near-tuned components. These distributions exhibit substantial similarities with physiological measurements in V1, however in common with previous research we also observe important differences, in particular distributions of binocular phase disparity which do not match physiologypublishersversionPeer reviewe

    Ideal binocular disparity detectors learned using independent subspace analysis on binocular natural image pairs

    Get PDF
    This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) grant [BB/K018973/1].An influential theory of mammalian vision, known as the efficient coding hypothesis, holds that early stages in the visual cortex attempts to form an efficient coding of ecologically valid stimuli. Although numerous authors have successfully modelled some aspects of early vision mathematically, closer inspection has found substantial discrepancies between the predictions of some of these models and observations of neurons in the visual cortex. In particular analysis of linear-non-linear models of simple-cells using Independent Component Analysis has found a strong bias towards features on the horoptor. In order to investigate the link between the information content of binocular images, mathematical models of complex cells and physiological recordings, we applied Independent Subspace Analysis to binocular image patches in order to learn a set of complex-cell-like models. We found that these complex-cell-like models exhibited a wide range of binocular disparity-discriminability, although only a minority exhibited high binocular discrimination scores. However, in common with the linear-non-linear model case we found that feature detection was limited to the horoptor suggesting that current mathematical models are limited in their ability to explain the functionality of the visual cortex.Publisher PDFPeer reviewe

    Electrophoresis of colloidal dispersions in the low-salt regime

    Full text link
    We study the electrophoretic mobility of spherical charged colloids in a low-salt suspension as a function of the colloidal concentration. Using an effective particle charge and a reduced screening parameter, we map the data for systems with different particle charges and sizes, including numerical simulation data with full electrostatics and hydrodynamics and experimental data for latex dispersions, on a single master curve. We observe two different volume fraction-dependent regimes for the electrophoretic mobility that can be explained in terms of the static properties of the ionic double layer.Comment: Substantially revised versio
    • …
    corecore