215 research outputs found

    Estimation of fiber diameters in the spinal dorsal columns from clinical data

    Get PDF
    Lack of human morphometric data regarding the largest nerve fibers in the dorsal columns (DCs) of the spinal cord has lead to the estimation of the diameters of these fibers from clinical data retrieved from patients with a new spinal cord stimulation (SCS) system. These patients indicated the perception threshold of stimulation induced paresthesia in various body segments, while the stimulation amplitude was increased. The fiber diameters were calculated with a computer model, developed to calculate the effects of SCS on spinal nerve fibers. This computer model consists of two parts: (1) a three-dimensional (3-D) volume conductor model of a spinal cord segment in which the potential distribution due to electrical stimulation is calculated and (2) an electrical equivalent cable model of myelinated nerve fiber, which uses the calculated potential field to determine the threshold stimulus needed for activation. It is shown that the largest fibers in the medial DCs are significantly smaller than the largest fibers in the lateral parts. This finding is in accordance with the fiber distribution in cat, derived from the corresponding propagation velocities. Moreover, it is shown that the mediolateral increase in fiber diameter is mainly confined to the lateral parts of the DCs. Implementation of this mediolateral fiber diameter distribution of the DCs in the computer model enables the prediction of the recruitment order of dermatomal paresthesias following increasing electrical stimulation amplitud

    An Error Analysis of the Geometric Baade-Wesselink Method

    Full text link
    We derive an analytic solution for the minimization problem in the geometric Baade-Wesselink method. This solution allows deriving the distance and mean radius of a pulsating star by fitting its velocity curve and angular diameter measured interferometrically. The method also provide analytic solutions for the confidence levels of the best fit parameters, and accurate error estimates for the Baade-Wesselink solution. Special care is taken in the analysis of the various error sources in the final solution, among which the uncertainties due to the projection factor, the limb darkening and the velocity curve. We also discuss the importance of the phase shift between the stellar lightcurve and the velocity curve as a potential error source in the geometric Baade-Wesselink method. We finally discuss the case of the Classical Cepheid zeta Gem, applying our method to the measurements derived with the Palomar Testbed Interferometer. We show how a careful treatment of the measurement errors can be potentially used to discriminate between different models of limb darkening using interferometric techniques.Comment: 24 pages, to be published on the Astrophysical Journal, vol. 603 March 200

    The Opacity of Nearby Galaxies from Counts of Background Galaxies: II. Limits of the Synthetic Field Method

    Get PDF
    Recently, we have developed and calibrated the Synthetic Field Method (SFM) to derive the total extinction through disk galaxies. The method is based on the number counts and colors of distant background field galaxies that can be seen through the foreground object, and has been successfully applied to NGC 4536 and NGC 3664, two late-type galaxies located, respectively, at 16 and 11 Mpc. Here, we study the applicability of the SFM to HST images of galaxies in the Local Group, and show that background galaxies cannot be easily identified through these nearby objects, even with the best resolution available today. In the case of M 31, each pixel in the HST images contains 50 to 100 stars, and the background galaxies cannot be seen because of the intrinsic granularity due to strong surface brightness fluctuations. In the LMC, on the other hand, there is only about one star every six linear pixels, and the lack of detectable background galaxies results from a ``secondary'' granularity, introduced by structure in the wings of the point spread function. The success of the SFM in NGC 4536 and NGC 3664 is a natural consequence of the reduction of the intensity of surface brightness fluctuations with distance. When the dominant confusion factor is structure in the PSF wings, as is the case of HST images of the LMC, and would happen in M 31 images obtained with a 10-m diffraction- limited optical telescope, it becomes in principle possible to improve the detectability of background galaxies by subtracting the stars in the foreground object. However, a much better characterization of optical PSFs than is currently available would be required for an adequate subtraction of the wings. Given the importance of determining the dust content of Local Group galaxies, efforts should be made in that direction.Comment: 45 pages, 10 Postscript figure

    Cepheid variables in the LMC cluster NGC 1866. I. New BVRI CCD photometry

    Full text link
    We report BV(RI)c CCD photometric data for a group of seven Cepheid variables in the young, rich cluster NGC 1866 in the Large Magellanic Cloud. The photometry was obtained as part of a program to determine accurate distances to these Cepheids by means of the infrared surface brightness technique, and to improve the LMC Cepheid database for constructing Cepheid PL and PLC relations. Using the new data together with data from the literature, we have determined improved periods for all variables. For five fundamental mode pulsators, the light curves are now of excellent quality and will lead to accurate distance and radius determinations once complete infrared light curves and radial velocity curves for these variables become available.Comment: To appear in ApJ Supp., AASTeX, 24 pages, 8 tables, 8 figure

    The Opacity of Spiral Galaxy Disks VIII: Structure of the Cold ISM

    Get PDF
    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper, we compare two techniques, one based on emission and one on absorption, applied on sections of fourteen disk galaxies. The two measurements reflect, respectively the average and apparent optical depth of a disk section. Hence, they depend differently on the average number and optical depth of ISM structures in the disk. The small scale geometry of the cold ISM is critical for accurate models of the overall energy budget of spiral disks. ISM geometry, relative contributions of different stellar populations and dust emissivity are all free parameters in galaxy Spectral Energy Distribution (SED) models; they are also sometimes degenerate, depending on wavelength coverage. Our aim is to constrain typical ISM geometry. The apparent optical depth measurement comes from the number of distant galaxies seen in HST images through the foreground disk. We measure the IR flux in images from the {\it Spitzer} Infrared Nearby Galaxy Survey in the same section of the disk that was covered by HST. A physical model of the dust is fit to the SED to estimate the dust surface density, mean temperature, and brightness in these disk sections. The surface density is subsequently converted into the average optical depth estimate. The two measurements generally agree. The ratios between the measured average and apparent optical depths of the disk sections imply optically thin clouds in these disks. Optically thick disks, are likely to have more than a single cloud along the line-of-sight.Comment: 31 pages, 5 figures, 4 tables, accepted for publication in A

    Classical Cepheids: Yet another version of the Baade-Becker-Wesselink method

    Full text link
    We propose a new version of the Baade--Becker--Wesselink technique, which allows one to independently determine the colour excess and the intrinsic colour of a radially pulsating star, in addition to its radius, luminosity, and distance. It is considered to be a generalization of the Balona approach. The method also allows the function F(CI) = BC + 10 log (Teff) for the class of pulsating stars considered to be calibrated. We apply this technique to a number of classical Cepheids with very accurate light and radial-velocity curves and with bona fide membership in open clusters (SZ Tau, CF Cas, U Sgr, DL Cas, GY Sge), and find the results to agree well with the reddening estimates of the host open clusters. The new technique can also be applied to other pulsating variables, e.g. RR Lyrae and RV Tauri.Comment: 6 pages, 2 figures, 1 table; Submitted to Astrophysical Bulletin, 201

    Murine iNKT cells are depleted by liver damage via activation of P2RX7

    Get PDF
    Invariant natural killer T cells (iNKT) constitute up to 50% of liver lymphocytes and contribute to immunosurveillance as well as pathogenesis of the liver. Systemic activation of iNKT cells induces acute immune-mediated liver injury. However, how tissue damage events regulate iNKT cell function and homeostasis remains unclear. We found that specifically tissue-resident iNKT cells in liver and spleen express the tissue-damage receptor P2RX7 and the P2RX7-activating ectoenzyme ARTC2. P2RX7 expression restricted formation of iNKT cells in the liver suggesting that liver iNKT cells are actively restrained under homeostatic conditions. Deliberate activation of P2RX7 in vivo by exogenous NAD resulted in a nearly complete iNKT cell ablation in liver and spleen in a P2RX7-dependent manner. Tissue damage generated by acetaminophen-induced liver injury reduced the number of iNKT cells in the liver. The tissue-damage-induced iNKT cell depletion was driven by P2RX7 and localized to the site of injury, as iNKT cells in the spleen remained intact. The depleted liver iNKT cells reconstituted only slowly compared to other lymphocytes such as regulatory T cells. These findings suggest that tissue-damage-mediated depletion of iNKT cells acts as a feedback mechanism to limit iNKT cell-induced pathology resulting in the establishment of a tolerogenic environment

    Radii and Distances of Cepheids, I., Method and Measurement Errors

    Get PDF
    We develop a formulation of the Baade-Wesselink method which uses the Fourier coefficients of the observables. We derive an explicit, analytic expression to determine the mean radius from each Fourier order. The simplicity of this method allows us to derive the uncertainty in the mean radius due to measurement errors. Using simulations and a recent dataset we demonstrate that the precision of the radius measurement with optical magnitudes is in most cases limited by the accuracy of the measurement of the phase difference between the light and the color index curve. In this case it is advantageous to determine the inverse radius, because it has normal errors.Comment: 18 pages, postscript, accepted for publication in Ap

    Distances, ages, and epoch of formation of globular clusters

    Get PDF
    We review the results on distances and absolute ages of galactic globular clusters (GCs) obtained after the release of the Hipparcos catalogue. Several methods for the Population II local distance scale are discussed, exploiting NEW RESULTS for RR Lyraes in the Large Magellanic Cloud (LMC). We find that the so-called Short and Long Distance Scales may be reconciled whether a consistent reddening scale is adopted for Cepheids and RR Lyrae variables in the LMC. Distances and ages for the 9 clusters discussed in Paper I are re-derived using an enlarged sample of local subdwarfs, which includes about 90% of the metal-poor dwarfs with accurate parallaxes (Delta p/p < 0.12) in the whole Hipparcos catalogue. On average, our revised distance moduli are decreased by 0.04 mag with respect to Paper I. The corresponding age of the GCs is t=11.5+-2.6 Gyr (95% confidence range). The relation between Mv(ZAHB) and metallicity for the nine programme clusters turns out to be Mv(ZAHB)=(0.18+-0.09)([Fe/H]+1.5)+(0.53+-0.12).Thanks to Hipparcos the major contribution to the total error budget associated with the subdwarf fitting technique has been moved from parallaxes to photometric calibrations, reddening and metallicity scale. This total uncertainty still amounts to about +-0.12 mag. Comparing the corresponding (true) LMC distance modulus 18.64+-0.12 mag with other existing determinations, we conclude that at present the best estimate for the distance of the LMC is: 18.54+-0.03+-0.06, suggesting that distances from the subdwarf fitting method are 1 sigma too long. Consequently, our best estimate for the age of the GCs is revised to: Age = 12.9+-2.9 Gyr (95% confidence range). The best relation between Mv(ZAHB) and [Fe/H] is: Mv(ZAHB) =(0.18+-0.09)([Fe/H]+1.5)+(0.63+-0.07).Comment: 76 pages, 6 encapsulated figures and 6 tables. Latex, uses aasms4.sty. Revised and improved version, with new data on field RR Lyraes in LMC. Accepted in the Astrophysical Journa

    Theoretical Limb Darkening for Pulsating Cepheids

    Get PDF
    This work presents a new method to compute time and wavelength dependent center-to-limb brightness distributions for Classical Cepheids. Our model atmospheres are based on second-order accurate 1-D hydrodynamic calculations, performed in spherical geometry. The brightness intensity distributions, and the resulting limb darkening, are computed through the dynamic atmospheres by using a full set of atomic and molecular opacities. Our results confirm important differences with respect to equivalent hydrostatic models. The amount of limb darkening, and the shape of the limb profiles, show a strong dependence on the pulsational phase of the Cepheid, which cannot be reproduced by static models. Non-linear effects in our hydrodynamic equations add a new level of complexity in the wavelength dependence of our limb profiles, which are affected by the presence of shock-waves traveling through the atmosphere. These effects, already detectable by present-day interferometers, should be taken into consideration when deriving limb darkened diameters for nearby Cepheids with the accuracy required to measure their radial pulsations.Comment: Accepted for publication in the Astrophysical Journa
    corecore