7,546 research outputs found

    Cornering characteristics of the nose-gear tire of the space shuttle orbiter

    Get PDF
    An experimental investigation was conducted to evaluate cornering characteristics of the 32 x 8.8 nose gear tire of the space shuttle orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during space shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction force moment arm, and the lateral center of pressure shift. Results of this investigation indicate that the cornering characteristics of the space shuttle nose gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes

    Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    Get PDF
    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions

    Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 1: Ejecta production and orbital dynamics in cislunar space

    Get PDF
    Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity

    Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 2: Ejecta dynamics and enhanced lifetimes in the Earth's magnetosphere

    Get PDF
    Extensive studies were conducted concerning the indivdual mass, temporal and positional distribution of micron and submicron lunar ejecta existing in the Earth-Moon gravitational sphere of influence. Initial results show a direct correlation between the position of the Moon, relative to the Earth, and the percentage of lunar ejecta leaving the Moon and intercepting the magnetosphere of the Earth at the magnetopause surface. It is seen that the Lorentz Force dominates all other forces, thus suggesting that submicron dust particles might possibly be magnetically trapped in the well known radiation zones

    Bioactive ceramic-reinforced composites for bone augmentation

    Get PDF
    Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed

    Kinetic energy change with doping upon superfluid condensation in high temperature superconductors

    Full text link
    In conventional BCS superconductors, the electronic kinetic energy increases upon superfluid condensation (the change DEkin is positive). Here we show that in the high critical temperature superconductor Bi-2212, DEkin crosses over from a fully compatible conventional BCS behavior (DEkin>0) to an unconventional behavior (DEkin<0) as the free carrier density decreases. If a single mechanism is responsible for superconductivity across the whole phase diagram of high critical temperature superconductors, this mechanism should allow for a smooth transition between such two regimes around optimal doping.Comment: 3 pages, 2 figure

    Simulation of truncated normal variables

    Full text link
    We provide in this paper simulation algorithms for one-sided and two-sided truncated normal distributions. These algorithms are then used to simulate multivariate normal variables with restricted parameter space for any covariance structure.Comment: This 1992 paper appeared in 1995 in Statistics and Computing and the gist of it is contained in Monte Carlo Statistical Methods (2004), but I receive weekly requests for reprints so here it is

    On the segmentation and classification of hand radiographs

    Get PDF
    This research is part of a wider project to build predictive models of bone age using hand radiograph images. We examine ways of finding the outline of a hand from an X-ray as the first stage in segmenting the image into constituent bones. We assess a variety of algorithms including contouring, which has not previously been used in this context. We introduce a novel ensemble algorithm for combining outlines using two voting schemes, a likelihood ratio test and dynamic time warping (DTW). Our goal is to minimize the human intervention required, hence we investigate alternative ways of training a classifier to determine whether an outline is in fact correct or not. We evaluate outlining and classification on a set of 1370 images. We conclude that ensembling with DTW improves performance of all outlining algorithms, that the contouring algorithm used with the DTW ensemble performs the best of those assessed, and that the most effective classifier of hand outlines assessed is a random forest applied to outlines transformed into principal components

    Finite element thermal analysis of the fusion welding of a P92 steel pipe

    Get PDF
    Fusion welding is common in steel pipeline construction in fossil-fuel power generation plants. Steel pipes in service carry steam at high temperature and pressure, undergoing creep during years of service; their integrity is critical for the safe operation of a plant. The high-grade martensitic P92 steel is suitable for plant pipes for its enhanced creep strength. P92 steel pipes are usually joined together with a similar weld metal. Martensitic pipes are sometimes joined to austenitic steel pipes using nickel based weld consumables. Welding involves severe thermal cycles, inducing residual stresses in the welded structure, which, without post weld heat treatment (PWHT), can be detrimental to the integrity of the pipes. Welding residual stresses can be numerically simulated by applying the finite element (FE) method in Abaqus. The simulation consists of a thermal analysis, determining the temperature history of the FE model, followed by a sequentially-coupled structural analysis, predicting residual stresses from the temperature history. &lt;br&gt;&lt;br&gt; In this paper, the FE thermal analysis of the arc welding of a typical P92 pipe is presented. The two parts of the P92 steel pipe are joined together using a dissimilar material, made of Inconel weld consumables, producing a multi-pass butt weld from 36 circumferential weld beads. Following the generation of the FE model, the FE mesh is controlled using Model Change in Abaqus to activate the weld elements for each bead at a time corresponding to weld deposition. The thermal analysis is simulated by applying a distributed heat flux to the model, the accuracy of which is judged by considering the fusion zones in both the parent pipe as well as the deposited weld metal. For realistic fusion zones, the heat flux must be prescribed in the deposited weld pass and also the adjacent pipe elements. The FE thermal results are validated by comparing experimental temperatures measured by five thermocouples on the pipe outside surface with the FE temperature history at corresponding nodal points

    Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit, Chile

    Get PDF
    We present a comparative study between early, massive pyrite preceding (Cu–Ag) sulfosalt mineralization in high-temperature feeder zones (‘early pyrite’) and late pyrite that formed during silicic alteration associated with Au deposition (‘late pyrite’) at the El Indio high-sulfidation Au–Ag–Cu deposit, Chile. We use coupled in situ sulfur isotope and trace element analyses to chronologically assess geochemical variations across growth zones in these pyrite crystals. Early pyrite that formed in high-temperature feeder zones shows intricate oscillatory zonation of Cu, with individual laminae containing up to 1.15 wt% Cu and trace Co, As, Bi, Ni, Zn, Se, Ag, Sb, Te, Au, Pb and Bi. Late pyrite formed after (Cu–Ag) sulfosalt mineralization. It contains up to 1.14 wt% As with trace Cu, Zn, Pb, V, Mn, Co, Ni, Ge, Se, Ag, Sb, Te, Pb and Bi, as well as colloform Cu-rich growth bands containing vugs toward the outer edges of some crystals. Plotting the trace element data in chronological order (i.e., from core to rim) revealed that Co and Ni were the only elements to consistently co-vary across growth zones. Other trace elements were coupled in specific growth zones, but did not consistently co-vary across any individual crystal. The δ34S of early pyrite crystals in high-temperature feeder zones range from −3.19 to 1.88 ‰ (±0.5 ‰), consistent with sublimation directly from a high-temperature magmatic vapor phase. Late pyrite crystals are distinctly more enriched in δ34S than early pyrite (δ34S = 0.05–4.77 ‰, ±0.5 ‰), as a consequence of deposition from a liquid phase at lower temperatures. It is unclear whether the late pyrite was deposited from a small volume of liquid condensate, or a larger volume of hydrothermal fluid. Both types of pyrite exhibit intracrystalline δ34S variation, with a range of up to 3.31 ‰ recorded in an early pyrite crystal and up to 4.48 ‰ in a late pyrite crystal. Variations in δ34Spyrite at El Indio did not correspond with changes in trace element geochemistry. The lack of correlation between trace elements and δ34S, as well as the abundance of microscale mineral inclusions and vugs in El Indio pyrite indicate that the trace element content of pyrite at El Indio is largely controlled by nanoscale, syn-depositional mineral inclusions. Co and Ni were the only elements partitioned within the crystal structure of pyrite. Cu-rich oscillatory zones in early pyrite likely formed by nanoscale inclusions of Cu-rich sulfosalts or chalcopyrite, evidence of deposition from a fluid cyclically saturated in ore metals. This process may be restricted to polymetallic high-sulfidation-like deposits
    corecore