916 research outputs found
Magnetic inflation and stellar mass. V. Intensification and saturation of M-dwarf absorption lines with Rossby number
In young Sun-like stars and field M-dwarf stars, chromospheric and coronal magnetic activity indicators such as Hα, X-ray, and radio emission are known to saturate with low Rossby number (Ro lesssim 0.1), defined as the ratio of rotation period to convective turnover time. The mechanism for the saturation is unclear. In this paper, we use photospheric Ti i and Ca i absorption lines in the Y band to investigate magnetic field strength in M dwarfs for Rossby numbers between 0.01 and 1.0. The equivalent widths of the lines are magnetically enhanced by photospheric spots, a global field, or a combination of the two. The equivalent widths behave qualitatively similar to the chromospheric and coronal indicators: we see increasing equivalent widths (increasing absorption) with decreasing Ro and saturation of the equivalent widths for Ro lesssim 0.1. The majority of M dwarfs in this study are fully convective. The results add to mounting evidence that the magnetic saturation mechanism occurs at or beneath the stellar photosphere.Published versio
Quantum Phase Transitions in Anti-ferromagnetic Planar Cubic Lattices
Motivated by its relation to an -hard problem, we analyze the
ground state properties of anti-ferromagnetic Ising-spin networks embedded on
planar cubic lattices, under the action of homogeneous transverse and
longitudinal magnetic fields. This model exhibits a quantum phase transition at
critical values of the magnetic field, which can be identified by the
entanglement behavior, as well as by a Majorization analysis. The scaling of
the entanglement in the critical region is in agreement with the area law,
indicating that even simple systems can support large amounts of quantum
correlations. We study the scaling behavior of low-lying energy gaps for a
restricted set of geometries, and find that even in this simplified case, it is
impossible to predict the asymptotic behavior, with the data allowing equally
good fits to exponential and power law decays. We can therefore, draw no
conclusion as to the algorithmic complexity of a quantum adiabatic ground-state
search for the system.Comment: 7 pages, 13 figures, final version (accepted for publication in PRA
Second malignancies in breast cancer patients following radiotherapy: a study in Florence, Italy.
ntroduction: Patients diagnosed with breast cancer are often treated with surgery followed by radiation therapy. In this paper, we evaluate the effect that radiotherapy may have had on the subsequent risk of second malignancies, including the possible influences of age at treatment and menopausal status.Methods: In order to evaluate the long-term consequences of radiotherapy, a cohort study was conducted based on clinical records for 5,248 women treated for breast cancer in Florence (Italy), with continuous follow-up from 1965 to 1994. The Cox proportional hazards model for ungrouped survival data was used to estimate the relative risk for second cancer after radiotherapy.Results: This study indicated an increased relative risk of all second cancers combined following radiotherapy (1.22, 95% CI: 0.88 to 1.69). The increased relative risk appeared five or more years after radiotherapy and appeared to be highest amongst women treated after the menopause (1.61, 95% CI: 1.13 to 2.29). Increased relative risks were observed specifically for leukaemia (8.13, 95% CI: 0.96 to 69.1) and other solid cancers (1.84, 95% CI: 1.06 to 3.16), excluding contralateral breast cancer. For contralateral breast cancer, no raised relative risk was observed during the period more than five years after radiotherapy.Conclusions: The study indicated a raised risk of second malignancies associated with radiotherapy for breast cancer, particularly for women treated after the menopause
Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017
We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence
Friends of Hot Jupiters II: No Correspondence Between Hot-Jupiter Spin-Orbit Misalignment and the Incidence of Directly Imaged Stellar Companions
Multi-star systems are common, yet little is known about a stellar
companion's influence on the formation and evolution of planetary systems. For
instance, stellar companions may have facilitated the inward migration of hot
Jupiters towards to their present day positions. Many observed short period gas
giant planets also have orbits that are misaligned with respect to their star's
spin axis, which has also been attributed to the presence of a massive outer
companion on a non-coplanar orbit. We present the results of a multi-band
direct imaging survey using Keck NIRC2 to measure the fraction of short period
gas giant planets found in multi-star systems. Over three years, we completed a
survey of 50 targets ("Friends of Hot Jupiters") with 27 targets showing some
signature of multi-body interaction (misaligned or eccentric orbits) and 23
targets in a control sample (well-aligned and circular orbits). We report the
masses, projected separations, and confirmed common proper motion for the 19
stellar companions found around 17 stars. Correcting for survey incompleteness,
we report companion fractions of , , and
in our total, misaligned/eccentric, and control samples, respectively. This
total stellar companion fraction is larger than the fraction of
field stars with companions approximately AU. We observe no
correlation between misaligned/eccentric hot Jupiter systems and the incidence
of stellar companions. Combining this result with our previous radial velocity
survey, we determine that of hot Jupiters are part of
multi-planet and/or multi-star systems.Comment: typos and references updated; 25 pages, 7 figures and 10 tables,
accepted for publication in Ap
The NASA-UC-UH Eta-Earth Program: IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth
We report the discovery of a low-mass planet orbiting Gl 15 A based on radial
velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab
is a planet with minimum mass Msini = 5.35 0.75 M, orbital
period P = 11.4433 0.0016 days, and an orbit that is consistent with
circular. We characterize the host star using a variety of techniques.
Photometric observations at Fairborn Observatory show no evidence for
rotational modulation of spots at the orbital period to a limit of ~0.1 mmag,
thus supporting the existence of the planet. We detect a second RV signal with
a period of 44 days that we attribute to rotational modulation of stellar
surface features, as confirmed by optical photometry and the Ca II H & K
activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we
measure an M2 V spectral type and a sub-solar metallicity ([M/H] = -0.22,
[Fe/H] = -0.32). We measure a stellar radius of 0.3863 0.0021 R
based on interferometry from CHARA.Comment: ApJ accepted, 11 pages, 8 figures, 3 table
Kepler-445, Kepler-446 And The Occurrence Of Compact Multiples Orbiting Mid-M Dwarf Stars
We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([ Fe/H] = + 0.25 0.10) M4 dwarf with three transiting planets, and Kepler-446 is a metal-poor ([ Fe/H] = -0.30 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar toGJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kepler-445, Kepler-446, and Kepler-42, and isolating all mid-M dwarf stars observed by Kepler with the precision necessary to detect similar systems, we calculate that 21+ 7 -5 % of mid-M dwarf stars host compact multiples ( multiple planets with periods of less than 10 days) for a wide range of metallicities. We suggest that the inferred planet masses for these systems support highly efficient accretion of protoplanetary disk metals by mid-M dwarf protoplanets.NSF DGE1144152, AST-1005313NASA NAS5-26555NASA Office of Space Science NNX13AC07GAstronom
The gold standard: accurate stellar and planetary parameters for eight Kepler M dwarf systems enabled by parallaxes
We report parallaxes and proper motions from the Hawaii Infrared Parallax Program for eight nearby M dwarf stars with transiting exoplanets discovered by Kepler. We combine our directly measured distances with mass-luminosity and radius–luminosity relationships to significantly improve constraints on the host stars’ properties. Our astrometry enables the identification of wide stellar companions to the planet hosts. Within our limited sample, all the multi-transiting planet hosts (three of three) appear to be single stars, while nearly all (four of five) of the systems with a single detected planet have wide stellar companions. By applying strict priors on average stellar density from our updated radius and mass in our transit fitting analysis, we measure the eccentricity probability distributions for each transiting planet. Planets in single-star systems tend to have smaller eccentricities than those in binaries, although this difference is not significant in our small sample. In the case of Kepler-42bcd, where the eccentricities are known to be ≃0, we demonstrate that such systems can serve as powerful tests of M dwarf evolutionary models by working in L⋆ − ρ⋆ space. The transit-fit density for Kepler- 42bcd is inconsistent with model predictions at 2.1σ (22%), but matches more empirical estimates at 0.2σ (2%), consistent with earlier results showing model radii of M dwarfs are underinflated. Gaia will provide high-precision parallaxes for the entire Kepler M dwarf sample, and TESS will identify more planets transiting nearby, late-type stars, enabling significant improvements in our understanding of the eccentricity distribution of small planets and the parameters of late-type dwarfs.Support for Program number HST-HF2-51364.001-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu. (HST-HF2-51364.001-A - NASA through Space Telescope Science Institute; NAS5-26555 - NASA; NNX09AF08G - NASA Office of Space Science; NASA Science Mission directorate
Portraying the hosts: Stellar science from planet searches
Information on the full session can be found on this website: https://sites.google.com/site/portrayingthehostscs18/We present a compendium of the splinter session on stellar science from planet searches that was organized as part of the Cool Stars 18 conference. Seven speakers discussed techniques to infer stellar information from radial velocity, transit and microlensing data, as well as new instrumentation and missions designed for planet searches that will provide useful for the study of the cool stars
High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results
High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2
- …