665 research outputs found

    Localization of superconductivity in superconductor-electromagnet hybrids

    Full text link
    We investigate the nucleation of superconductivity in a superconducting Al strip under the influence of the magnetic field generated by a current-carrying Nb wire, perpendicularly oriented and located underneath the strip. The inhomogeneous magnetic field, induced by the Nb wire, produces a spatial modulation of the critical temperature T_c, leading to a controllable localization of the superconducting order parameter (OP) wave function. We demonstrate that close to the phase boundary T_c(B_ext) the localized OP solution can be displaced reversibly by either applying an external perpendicular magnetic field B_ext or by changing the amplitude of the inhomogeneous field.Comment: 10 pages, 6 figure

    Mesoscopic cross-film cryotrons: Vortex trapping and dc-Josephson-like oscillations of the critical current

    Full text link
    We investigate theoretically and experimentally the transport properties of a plain Al superconducting strip in the presence of a single straight current-carrying wire, oriented perpendicular to the superconducting strip. It is well known that the critical current of the superconducting strip, Ic, in such cryotron--like system can be tuned by changing the current in the control wire, Iw. We demonstrated that the discrete change in the number of the pinned vortices/antivortices inside the narrow and long strip nearby the current-carrying wire results in a peculiar oscillatory dependence of Ic on Iw.Comment: 8 pages, 8 figure

    A tunable macroscopic quantum system based on two fractional vortices

    Full text link
    We propose a tunable macroscopic quantum system based on two fractional vortices. Our analysis shows that two coupled fractional vortices pinned at two artificially created \kappa\ discontinuities of the Josephson phase in a long Josephson junction can reach the quantum regime where coherent quantum oscillations arise. For this purpose we map the dynamics of this system to that of a single particle in a double-well potential. By tuning the \kappa\ discontinuities with injector currents we are able to control the parameters of the effective double-well potential as well as to prepare a desired state of the fractional vortex molecule. The values of the parameters derived from this model suggest that an experimental realisation of this tunable macroscopic quantum system is possible with today's technology.Comment: We updated our manuscript due to a change of the focus from qubit to macroscopic quantum effect

    Oscillatory eigenmodes and stability of one and two arbitrary fractional vortices in long Josephson 0-kappa-junctions

    Get PDF
    We investigate theoretically the eigenmodes and the stability of one and two arbitrary fractional vortices pinned at one and two κ\kappa-phase discontinuities in a long Josephson junction. In the particular case of a single κ\kappa-discontinuity, a vortex is spontaneously created and pinned at the boundary between the 0 and κ\kappa-regions. In this work we show that only two of four possible vortices are stable. A single vortex has an oscillatory eigenmode with a frequency within the plasma gap. We calculate this eigenfrequency as a function of the fractional flux carried by a vortex. For the case of two vortices, pinned at two κ\kappa-discontinuities situated at some distance aa from each other, splitting of the eigenfrequencies occur. We calculate this splitting numerically as a function of aa for different possible ground states. We also discuss the presence of a critical distance below which two antiferromagnetically ordered vortices form a strongly coupled ``vortex molecule'' that behaves as a single object and has only one eigenmode.Comment: submitted to Phys. Rev. B (

    Controllable plasma energy bands in a 1D crystal of fractional Josephson vortices

    Get PDF
    We consider a 1D chain of fractional vortices in a long Josephson junction with alternating ±κ\pm\kappa phase discontinuities. Since each vortex has its own eigenfrequency, the inter-vortex coupling results in eigenmode splitting and in the formation of an oscillatory energy band for plasma waves. The band structure can be controlled at the design time by choosing the distance between vortices or \emph{during experiment} by varying the topological charge of vortices or the bias current. Thus one can construct an artificial vortex crystal with controllable energy bands for plasmons.Comment: 4 pages, 2 Fig

    A Novel Approach of Identifying Immunodominant Self and Viral Antigen Cross-Reactive T Cells and Defining the Epitopes They Recognize

    Get PDF
    Infection and vaccination can lead to activation of autoreactive T cells, including the activation of cross-reactive T cells. However, detecting these cross-reactive T cells and identifying the non-self and self-antigen epitopes is difficult. The current study demonstrates the utility of a novel approach that effectively accomplishes both. We utilized surface expression of CD38 on newly activated CD4 memory T cells as a strategy to identify type 1 diabetes associated autoreactive T cells activated by influenza vaccination in healthy subjects. We identified an influenza A matrix protein (MP) specific CD4+ T cell clone that cross-recognizes an immunodominant epitope from Glutamic Acid Decarboxylase 65 (GAD65) protein. The sequences of the MP and GAD65 peptides are rather distinct, with only 2 identical amino acids within the HLA-DR binding region. This result suggests that activation of autoreactive T cells by microbial infection under certain physiological conditions can occur amongst peptides with minimum amino acid sequence homology. This novel strategy also provides a new research pathway in which to examine activation of autoreactive CD4+ T cells after vaccination or natural infection

    Single cell transcriptomics reveal polyclonal memory T cell responses in abacavir patch test positive skin

    Get PDF
    Capsule Summary. Single-cell responses in HLA-B*57:01 abacavir patch test positive skin remote to the acute hypersensitivity reaction demonstrate polyclonal T-cell activation and proliferation characterized by a transcriptional and cellular response consistent with memory responses to altered peptides

    Theory of Type-II Superconductors with Finite London Penetration Depth

    Full text link
    Previous continuum theory of type-II superconductors of various shapes with and without vortex pinning in an applied magnetic field and with transport current, is generalized to account for a finite London penetration depth lambda. This extension is particularly important at low inductions B, where the transition to the Meissner state is now described correctly, and for films with thickness comparable to or smaller than lambda. The finite width of the surface layer with screening currents and the correct dc and ac responses in various geometries follow naturally from an equation of motion for the current density in which the integral kernel now accounts for finite lambda. New geometries considered here are thick and thin strips with applied current, and `washers', i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure

    Local electrical imaging of tetragonal domains and field-induced ferroelectric twin walls in conducting SrTiO3

    Get PDF
    This work is supported by the National University of Singapore (NUS) Academic Research Fund (AcRF Tier 1 Grants No. R-144-000-346-112 and No. R-144-000-364-112) and the Singapore National Research Foundation (NRF) under the Competitive Research Programs (CRP Awards No. NRF-CRP 8-2011-06 and No. NRF-CRP10-2012-02) by the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, Grant No. ZUK 63), and by the EU-FP6-COST Grant No. MP1308.We demonstrate electrical mapping of tetragonal domains and electric field-induced twin walls in SrTiO3 as a function of temperature and gate bias utilizing the conducting LaAlO3/SrTiO3 interface and low-temperature scanning electron microscopy. Conducting twin walls appear below 105 K, and new twin patterns are observed after thermal cycling through the transition or on electric field gating. The nature of the twin walls is confirmed by calculating their intersection angles for different substrate orientations. Numerous walls formed when a large side- or back-gate voltage is applied are identified as field-induced ferroelectric twin walls in the paraelectric tetragonal matrix. The walls persist after switching off the electric field and on thermal cycling below 105 K. These observations point to a new type of ferroelectric functionality in SrTiO3, which could be exploited together with magnetism and superconductivity in a multifunctional context.Publisher PDFPeer reviewe
    • …
    corecore