29,161 research outputs found

    Bi(111) thin film with insulating interior but metallic surfaces

    Full text link
    The electrical conductance of molecular beam epitaxial Bi on BaF2(111) was measured as a function of both film thickness (4-540 nm) and temperature (5-300 K). Unlike bulk Bi as a prototype semimetal, the Bi thin films up to 90 nm are found to be insulating in the interiors but metallic on the surfaces. This result has not only resolved unambiguously the long controversy about the existence of semimetal-semiconductor transition in Bi thin film but also provided a straightforward interpretation for the long-puzzled temperature dependence of the resistivity of Bi thin films, which in turn might suggest some potential applications in spintronics

    Driving light pulses with light in two-level media

    Full text link
    A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved by establishing a standing cavity wave with a linearly polarized electromagnetic field that drives the medium on both ends. A light pulse, polarized along the other direction, then scatters the medium and couples to the cavity standing wave by means of the population inversion density variations. We demonstrate that control of the applied amplitudes of the grating field allows to stop the light pulse and to make it move backward (eventually to drive it freely). A simplified limit model of the MB system with variable boundary driving is obtained as a discrete nonlinear Schroedinger equation with tunable external potential. It reproduces qualitatively the dynamics of the driven light pulse

    Non-collinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co2V2O7

    Get PDF
    The Co2V2O7 is recently reported to exhibit amazing magnetic field-induced magnetization plateaus and ferroelectricity, but its magnetic ground state remains ambiguous due to its structural complexity. Magnetometry measurements, and time-of-flight neutron powder diffraction (NPD) have been employed to study the structural and magnetic properties of Co2V2O7, which consists of two non-equivalent Co sites. Upon cooling below the Ne\'el temperature TN = 6.3 K, we observe magnetic Bragg peaks at 2K in NPD which indicated the formation of long range magnetic order of Co2+ moments. After symmetry analysis and magnetic structure refinement, we demonstrate that Co2V2O7 possesses a complicated non-collinear magnetic ground state with Co moments mainly located in b-c plane and forming a non-collinear spin-chain-like structure along the c-axis. The ab initio calculations demonstrate that the non-collinear magnetic structure is more stable than various ferromagnetic states at low temperature. The non-collinear magnetic structure with canted up-up-down-down spin configuration is considered as the origin of magnetoelectric coupling in Co2V2O7 because the inequivalent exchange striction induced by the spin-exchange interaction between the neighboring spins is the driving force of ferroelectricity. Besides, it is found that the deviation of lattice parameters a and b is opposite below TN, while the lattice parameter c and stay almost constant below TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.Comment: 9 pages, 8 figure

    Nanoplasmonics beyond Ohm's law

    Full text link
    In tiny metallic nanostructures, quantum confinement and nonlocal response change the collective plasmonic behavior with important consequences for e.g. field-enhancement and extinction cross sections. We report on our most recent developments of a real-space formulation of an equation-of-motion that goes beyond the common local-response approximation and use of Ohm's law as the central constitutive equation. The electron gas is treated within a semi-classical hydrodynamic model with the emergence of a new intrinsic length scale. We briefly review the new governing wave equations and give examples of applying the nonlocal framework to calculation of extinction cross sections and field enhancement in isolated particles, dimers, and corrugated surfaces.Comment: Invited paper for TaCoNa-Photonics 2012 (www.tacona-photonics.org), to appear in AIP Conf. Pro

    Factorization and Unitarity in Superstring Theory

    Full text link
    The overall coefficient of the two-loop 4-particle amplitude in superstring theory is determined by making use of the factorization and unitarity. To accomplish this we computed in detail all the relevant tree and one-loop amplitudes involved and determined their overall coefficients in a consistent way.Comment: LaTex file, 19 pages, 4 figures; v2, minor corrections and figures corrected; v3, minor corrections with the English, to be published in JHE

    Non-magnetic impurities in two- and three- dimensional Heisenberg antiferromagnets

    Full text link
    In this paper we study in a large-S expansion effects of substituting spins by non-magnetic impurities in two- and three- dimensional Heisenberg antiferromagnets in a weak magnetic field. In particular, we demonstrate a novel mechanism where magnetic moments are induced around non-magnetic impurities when magnetic field is present. As a result, Curie-type behaviour in magnetic susceptibility can be observed well below the Neel temperature, in agreement with what is being observed in La2Cu1xZnxO4La_2Cu_{1-x}Zn_{x}O_4 and Sr(Cu1xZnx)2O3Sr(Cu_{1-x}Zn_x)_2O_3 compounds.Comment: Latex fil

    Orbital order and ferrimagnetic properties of the new compound Sr8CaRe3Cu4O24Sr_8 Ca Re_3 Cu_4 O_{24}

    Full text link
    By means of the LSDA+U method and the Green function method, we investigate the electronic and magnetic properties of the new material of Sr8_8CaRe3_3Cu4_4O24_{24}. Our LSDA+U calculation shows that this system is an insulator with a net magnetic moment of 1.01 μB\mu_{\rm B}/f.u., which is in good agreement with the experiment. Magnetic moments are mainly located at Cu atoms, and the magnetic moments of neighboring Cu sites align anti-parallel. It is the non-magnetic Re atoms that induce an orbital order of dd electrons of Cu atoms, which is responsible for the strong exchange interaction and the high magnetic transition temperature. Based on the LSDA+U results, we introduce an effective model for the spin degrees of freedom, and investigate the finite-temperature properties by the Green function method. The obtained results are consistent with the experimental results, indicating that the spin-alternating Heisenberg model is suitable for this compound.Comment: 8 pages and 5 figur

    Factorization of the Two Loop Four-Particle Amplitude in Superstring Theory Revisited

    Full text link
    We study in detail the factorization of the newly obtained two-loop four-particle amplitude in superstring theory. In particular some missing factors from the scalar correlators are obtained correctly, in comparing with a previous study of the factorization in two-loop superstring theory. Some details for the calculation of the factorization of the kinematic factor are also presented.Comment: 11 pages, 1 figure; v2, minor corrections and references update

    X-ray Insights into the Nature of Quasars with Redshifted Broad Absorption Lines

    Full text link
    We present ChandraChandra observations of seven broad absorption line (BAL) quasars at z=0.863z=0.863-2.516 with redshifted BAL troughs (RSBALs). Five of our seven targets were detected by ChandraChandra in 4-13 ks exposures with ACIS-S. The αox\alpha_{\rm ox} values, Δαox\Delta\alpha_{\rm ox} values, and spectral energy distributions of our targets demonstrate they are all X-ray weak relative to expectations for non-BAL quasars, and the degree of X-ray weakness is consistent with that of appropriately-matched BAL quasars generally. Furthermore, our five detected targets show evidence for hard X-ray spectral shapes with a stacked effective power-law photon index of Γeff=0.50.4+0.5\Gamma_{\rm eff}=0.5^{+0.5}_{-0.4}. These findings support the presence of heavy X-ray absorption (NH2×1023N_{\rm H}\approx 2 \times 10^{23} cm2^{-2}) in RSBAL quasars, likely by the shielding gas found to be common in BAL quasars more generally. We use these X-ray measurements to assess models for the nature of RSBAL quasars, finding that a rotationally-dominated outflow model is favored while an infall model also remains plausible with some stipulations. The X-ray data disfavor a binary quasar model for RSBAL quasars in general.Comment: 11 pages, 5 figures, and 3 table
    corecore