29,161 research outputs found
Bi(111) thin film with insulating interior but metallic surfaces
The electrical conductance of molecular beam epitaxial Bi on BaF2(111) was
measured as a function of both film thickness (4-540 nm) and temperature (5-300
K). Unlike bulk Bi as a prototype semimetal, the Bi thin films up to 90 nm are
found to be insulating in the interiors but metallic on the surfaces. This
result has not only resolved unambiguously the long controversy about the
existence of semimetal-semiconductor transition in Bi thin film but also
provided a straightforward interpretation for the long-puzzled temperature
dependence of the resistivity of Bi thin films, which in turn might suggest
some potential applications in spintronics
Driving light pulses with light in two-level media
A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved
by establishing a standing cavity wave with a linearly polarized
electromagnetic field that drives the medium on both ends. A light pulse,
polarized along the other direction, then scatters the medium and couples to
the cavity standing wave by means of the population inversion density
variations. We demonstrate that control of the applied amplitudes of the
grating field allows to stop the light pulse and to make it move backward
(eventually to drive it freely). A simplified limit model of the MB system with
variable boundary driving is obtained as a discrete nonlinear Schroedinger
equation with tunable external potential. It reproduces qualitatively the
dynamics of the driven light pulse
Non-collinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co2V2O7
The Co2V2O7 is recently reported to exhibit amazing magnetic field-induced
magnetization plateaus and ferroelectricity, but its magnetic ground state
remains ambiguous due to its structural complexity. Magnetometry measurements,
and time-of-flight neutron powder diffraction (NPD) have been employed to study
the structural and magnetic properties of Co2V2O7, which consists of two
non-equivalent Co sites. Upon cooling below the Ne\'el temperature TN = 6.3 K,
we observe magnetic Bragg peaks at 2K in NPD which indicated the formation of
long range magnetic order of Co2+ moments. After symmetry analysis and magnetic
structure refinement, we demonstrate that Co2V2O7 possesses a complicated
non-collinear magnetic ground state with Co moments mainly located in b-c plane
and forming a non-collinear spin-chain-like structure along the c-axis. The ab
initio calculations demonstrate that the non-collinear magnetic structure is
more stable than various ferromagnetic states at low temperature. The
non-collinear magnetic structure with canted up-up-down-down spin configuration
is considered as the origin of magnetoelectric coupling in Co2V2O7 because the
inequivalent exchange striction induced by the spin-exchange interaction
between the neighboring spins is the driving force of ferroelectricity.
Besides, it is found that the deviation of lattice parameters a and b is
opposite below TN, while the lattice parameter c and stay almost constant below
TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.Comment: 9 pages, 8 figure
Nanoplasmonics beyond Ohm's law
In tiny metallic nanostructures, quantum confinement and nonlocal response
change the collective plasmonic behavior with important consequences for e.g.
field-enhancement and extinction cross sections. We report on our most recent
developments of a real-space formulation of an equation-of-motion that goes
beyond the common local-response approximation and use of Ohm's law as the
central constitutive equation. The electron gas is treated within a
semi-classical hydrodynamic model with the emergence of a new intrinsic length
scale. We briefly review the new governing wave equations and give examples of
applying the nonlocal framework to calculation of extinction cross sections and
field enhancement in isolated particles, dimers, and corrugated surfaces.Comment: Invited paper for TaCoNa-Photonics 2012 (www.tacona-photonics.org),
to appear in AIP Conf. Pro
Factorization and Unitarity in Superstring Theory
The overall coefficient of the two-loop 4-particle amplitude in superstring
theory is determined by making use of the factorization and unitarity. To
accomplish this we computed in detail all the relevant tree and one-loop
amplitudes involved and determined their overall coefficients in a consistent
way.Comment: LaTex file, 19 pages, 4 figures; v2, minor corrections and figures
corrected; v3, minor corrections with the English, to be published in JHE
Non-magnetic impurities in two- and three- dimensional Heisenberg antiferromagnets
In this paper we study in a large-S expansion effects of substituting spins
by non-magnetic impurities in two- and three- dimensional Heisenberg
antiferromagnets in a weak magnetic field. In particular, we demonstrate a
novel mechanism where magnetic moments are induced around non-magnetic
impurities when magnetic field is present. As a result, Curie-type behaviour in
magnetic susceptibility can be observed well below the Neel temperature, in
agreement with what is being observed in and
compounds.Comment: Latex fil
Orbital order and ferrimagnetic properties of the new compound
By means of the LSDA+U method and the Green function method, we investigate
the electronic and magnetic properties of the new material of
SrCaReCuO. Our LSDA+U calculation shows that this system is
an insulator with a net magnetic moment of 1.01 /f.u., which is in
good agreement with the experiment. Magnetic moments are mainly located at Cu
atoms, and the magnetic moments of neighboring Cu sites align anti-parallel. It
is the non-magnetic Re atoms that induce an orbital order of electrons of
Cu atoms, which is responsible for the strong exchange interaction and the high
magnetic transition temperature. Based on the LSDA+U results, we introduce an
effective model for the spin degrees of freedom, and investigate the
finite-temperature properties by the Green function method. The obtained
results are consistent with the experimental results, indicating that the
spin-alternating Heisenberg model is suitable for this compound.Comment: 8 pages and 5 figur
Factorization of the Two Loop Four-Particle Amplitude in Superstring Theory Revisited
We study in detail the factorization of the newly obtained two-loop
four-particle amplitude in superstring theory. In particular some missing
factors from the scalar correlators are obtained correctly, in comparing with a
previous study of the factorization in two-loop superstring theory. Some
details for the calculation of the factorization of the kinematic factor are
also presented.Comment: 11 pages, 1 figure; v2, minor corrections and references update
X-ray Insights into the Nature of Quasars with Redshifted Broad Absorption Lines
We present observations of seven broad absorption line (BAL)
quasars at -2.516 with redshifted BAL troughs (RSBALs). Five of our
seven targets were detected by in 4-13 ks exposures with ACIS-S. The
values, values, and spectral energy
distributions of our targets demonstrate they are all X-ray weak relative to
expectations for non-BAL quasars, and the degree of X-ray weakness is
consistent with that of appropriately-matched BAL quasars generally.
Furthermore, our five detected targets show evidence for hard X-ray spectral
shapes with a stacked effective power-law photon index of . These findings support the presence of heavy X-ray
absorption ( cm) in RSBAL quasars,
likely by the shielding gas found to be common in BAL quasars more generally.
We use these X-ray measurements to assess models for the nature of RSBAL
quasars, finding that a rotationally-dominated outflow model is favored while
an infall model also remains plausible with some stipulations. The X-ray data
disfavor a binary quasar model for RSBAL quasars in general.Comment: 11 pages, 5 figures, and 3 table
- …