131 research outputs found

    Ultrathin oxides: bulk-oxide-like model surfaces or unique films?

    Full text link
    To better understand the electronic and chemical properties of wide-gap oxide surfaces at the atomic scale, experimental work has focused on epitaxial films on metal substrates. Recent findings show that these films are considerably thinner than previously thought. This raises doubts about the transferability of the results to surface properties of thicker films and bulk crystals. By means of density-functional theory and approximate GW corrections for the electronic spectra we demonstrate for three characteristic wide-gap oxides (silica, alumina, and hafnia) the influence of the substrate and highlight critical differences between the ultrathin films and surfaces of bulk materials. Our results imply that monolayer-thin oxide films have rather unique properties.Comment: 5 pages, 3 figures, accepted by PR

    Quasiparticle band structure based on a generalized Kohn-Sham scheme

    Full text link
    We present a comparative full-potential study of generalized Kohn-Sham schemes (gKS) with explicit focus on their suitability as starting point for the solution of the quasiparticle equation. We compare G0W0G_0W_0 quasiparticle band structures calculated upon LDA, sX, HSE03, PBE0, and HF functionals for exchange and correlation (XC) for Si, InN and ZnO. Furthermore, the HSE03 functional is studied and compared to the GGA for 15 non-metallic materials for its use as a starting point in the calculation of quasiparticle excitation energies. For this case, also the effects of selfconsistency in the GWGW self-energy are analysed. It is shown that the use of a gKS scheme as a starting point for a perturbative QP correction can improve upon the deficiencies found for LDA or GGA staring points for compounds with shallow dd bands. For these solids, the order of the valence and conduction bands is often inverted using local or semi-local approximations for XC, which makes perturbative G0W0G_0W_0 calculations unreliable. The use of a gKS starting point allows for the calculation of fairly accurate band gaps even in these difficult cases, and generally single-shot G0W0G_0W_0 calculations following calculations using the HSE03 functional are very close to experiment

    Benchmarking GW against exact diagonalization for semi-empirical models

    Get PDF
    We calculate groundstate total energies and single-particle excitation energies of seven pi conjugated molecules described with the semi-empirical Pariser-Parr-Pople (PPP) model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW captures around 65% of the groundstate correlation energy. The lowest lying excitations are overscreened by GW leading to an underestimation of electron affinities and ionization potentials by approximately 0.15 eV corresponding to 2.5%. One-shot G_0W_0 calculations starting from Hartree-Fock reduce the screening and improve the low-lying excitation energies. The effect of the GW self-energy on the molecular excitation energies is shown to be similar to the inclusion of final state relaxations in Hartree-Fock theory. We discuss the break down of the GW approximation in systems with short range interactions (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene.Comment: 9 pages, 5 figures, accepted for publication in Phys. Rev.

    Quasiparticle Self-Consistent GW Theory

    Full text link
    In past decades the scientific community has been looking for a reliable first-principles method to predict the electronic structure of solids with high accuracy. Here we present an approach which we call the quasiparticle self-consistent GW approximation (QpscGW). It is based on a kind of self-consistent perturbation theory, where the self-consistency is constructed to minimize the perturbation. We apply it to selections from different classes of materials, including alkali metals, semiconductors, wide band gap insulators, transition metals, transition metal oxides, magnetic insulators, and rare earth compounds. Apart some mild exceptions, the properties are very well described, particularly in weakly correlated cases. Self-consistency dramatically improves agreement with experiment, and is sometimes essential. Discrepancies with experiment are systematic, and can be explained in terms of approximations made.Comment: 12 pages, 3 figure

    Many-Body Approximation Scheme Beyond GW

    Full text link
    We explore the combination of the extended dynamical mean field theory (EDMFT) with the GW approximation (GWA); the former sums the local contributions to the self-energies to infinite order in closed form and the latter handles the non-local ones to lowest order. We investigate the different levels of self-consistency that can be implemented within this method by comparing to the exact QMC solution of a finite-size model Hamiltonian. We find that using the EDMFT solution for the local self-energies as input to the GWA for the non-local self-energies gives the best result.Comment: 4 pages, 8 figure

    Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces

    Get PDF
    The electronic structure of benzene on graphite (0001) is computed using the GW approximation for the electron self-energy. The benzene quasiparticle energy gap is predicted to be 7.2 eV on graphite, substantially reduced from its calculated gas-phase value of 10.5 eV. This decrease is caused by a change in electronic correlation energy, an effect completely absent from the corresponding Kohn-Sham gap. For weakly-coupled molecules, this correlation energy change is seen to be well described by a surface polarization effect. A classical image potential model illustrates trends for other conjugated molecules on graphite.Comment: 4 pages, 3 figures, 2 table

    Quasiparticle Electronic structure of Copper in the GW approximation

    Full text link
    We show that the results of photoemission and inverse photoemission experiments on bulk copper can be quantitatively described within band-structure theory, with no evidence of effects beyond the single-quasiparticle approximation. The well known discrepancies between the experimental bandstructure and the Kohn-Sham eigenvalues of Density Functional Theory are almost completely corrected by self-energy effects. Exchange-correlation contributions to the self-energy arising from 3s and 3p core levels are shown to be crucial.Comment: 4 pages, 2 figures embedded in the text. 3 footnotes modified and 1 reference added. Small modifications also in the text. Accepted for publication in PR
    • …
    corecore