45,339 research outputs found

    First-principles calculations of a high-pressure synthesized compound PtC

    Full text link
    First-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that the platinum carbide has a zinc-blende ground-state phase at zero pressure and the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt is determined to be 52GPa. Furthermore, our calculation shows the possibility that the experimentally synthesized PtC by Ono et al. under high pressure condition might undergo a transition from rock-salt structure to zinc-blende after the pressure quench to ambient condition.Comment: A revised versio

    Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K

    Full text link
    A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using high-pressure and high-temperature synthesis. A Rietveld refinement based on powder x-ray diffraction confirms that the superconductors crystallize in the K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but with partially occupied apical oxygen sites. It is found that the superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y superconductor with constant carrier doping level, i.e., constant d, is controlled not only by order/disorder of apical-O atoms but also by Ba content. Tcmax =98 K is achieved in the material with x=0.6 that reaches the record value of Tc among the single-layer copper oxide superconductors, and is higher than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The result indicates that another effect surpasses the disorder effect that is related either to the increased in-plane Cu-O bond length or to elongated apical-O distance due to Ba substitution with larger cation size. The present experiment demonstrates that the optimization of local geometry out of the Cu-O plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure

    Analytical theory for dark soliton interaction in nonlocal nonlinear materials with arbitrary degree of nonlocality

    Get PDF
    We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.Comment: submitted for publicatio

    Vacuum induced Berry phases in single-mode Jaynes-Cummings models

    Full text link
    Motivated by the work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquire the photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even the filed is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with cavity quantum electrodynamics (QED) system is designed to detect the vacuum-induced Berry phase.Comment: 10 pages, 4 figures

    Multipole polarizability of a graded spherical particle

    Full text link
    We have studied the multipole polarizability of a graded spherical particle in a nonuniform electric field, in which the conductivity can vary radially inside the particle. The main objective of this work is to access the effects of multipole interactions at small interparticle separations, which can be important in non-dilute suspensions of functionally graded materials. The nonuniform electric field arises either from that applied on the particle or from the local field of all other particles. We developed a differential effective multipole moment approximation (DEMMA) to compute the multipole moment of a graded spherical particle in a nonuniform external field. Moreover, we compare the DEMMA results with the exact results of the power-law graded profile and the agreement is excellent. The extension to anisotropic DEMMA will be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication

    Magnetic rotations in 198Pb and 199Pb within covariant density functional theory

    Full text link
    Well-known examples of shears bands in the nuclei 198Pb and 199Pb are investigated within tilted axis cranking relativistic mean-field theory. Energy spectra, the relation between spin and rotational frequency, deformation parameters and reduced M1M1 and E2E2 transition probabilities are calculated. The results are in good agreement with available data and with calculations based on the phenomenological pairing plus-quadrupole-quadrupole tilted-axis cranking model. It is shown that covariant density functional theory provides a successful microscopic and fully self-consistent description of magnetic rotation in the Pb region showing the characteristic properties as the shears mechanism and relatively large B(M1) transitions decreasing with increasing spin.Comment: 22 pages, 8 figure

    Statistical Delay QoS Driven Energy Efficiency and Effective Capacity Tradeoff for Uplink Multi-User Multi-Carrier Systems

    Get PDF
    In this paper, the total system effective capacity (EC) maximization problem for the uplink transmission, in a multi-user multi-carrier OFDMA system, is formulated as a combinatorial integer programming problem, subject to each user?s link-layer energy efficiency (EE) requirement as well as the individual?s average transmission power limit. To solve this challenging problem, we first decouple it into a frequency provisioning problem and an independent multi-carrier linklayer EE-EC tradeoff problem for each user. In order to obtain the subcarrier assignment solution, a low-complexity heuristic algorithm is proposed, which not only offers close-to-optimal solutions, while serving as many users as possible, but also has a complexity linearly relating to the size of the problem. After obtaining the subcarrier assignment matrix, the multi-carrier link-layer EE-EC tradeoff problem for each user is formulated and solved by using Karush-Kuhn-Tucker (KKT) conditions. The per-user optimal power allocation strategy, which is across both frequency and time domains, is then derived. Further, we theoretically investigate the impact of the circuit power and the EE requirement factor on each user?s EE level and optimal average power value. The low-complexity heuristic algorithm is then simulated to compare with the traditional exhaustive algorithm and a fair-exhaustive algorithm. Simulation results confirm our proofs and design intentions, and further show the effects of delay quality-of-service (QoS) exponent, the total number of users and the number of subcarriers on the system tradeoff performance
    • …
    corecore