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We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity.
In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique
to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.
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I. INTRODUCTION

Spatial optical solitons represent beams, which propagate in
nonlinear media without changing their profile. Their existence
is a result of an interplay between size-determined diffraction
and nonlinearity-induced phase modulation, which in most
cases is produced by the refractive index modification of the
material. Depending on the type of nonlinearity, nonlinear
media may support either bright or dark solitons [1]. While
bright solitons are just finite-size beams formed in media with
self-focusing nonlinearity, dark solitons are more complex
objects, as they represent an intensity dip in an otherwise
constant background with nontrivial phase profile [2]. Spatial
dark solitons have been observed and studied in media with a
negative or self-defocusing nonlinearity [3,4]. Their temporal
counterparts, which have the form of “dark pulses” (i.e.,
temporal intensity dips on a cw background) can exist in optical
fibers in the normal dispersion regime [5,6]. In recent years
the renewed interest in the properties of dark solitons stem
from experimental advances in the physics of matter waves.
In particular, the formation of dark matter wave solitons has
been observed in Bose-Einstein condensates with a repulsive
interparticle interaction [7–10]. There has also been a report
on the possibility of dark soliton formation in nonlinear
metamaterials [10]. Interestingly, temporal dark solitons were
also shown to be able to induce supercontinuum generation in
photonic crystal fibers [11].

The unique property of optical solitons, either bright or
dark, is their particle-like behavior in interaction [1]. However,
it is also well known that there is a fundamental difference in
the interaction of bright and dark solitons. While bright soltions
may attract, repel, or even form bound states, depending on
their relative phase [12–14], dark solitons always repel. This
has been confirmed in numerous theoretical and experimental
works [15–17]. We have shown recently that the nature of dark
soliton interaction can be drastically altered by the spatially
nonlocal character of nonlinearity [18,19]. In nonlocal media
the nonlinear response of the medium in a particular spatial
location is determined not only by the wave (light) intensity in
that position, as in the local media, but also by the intensity in a
certain neighborhood around the point. As a result, spatial non-
locality provides stabilization of bright solitons [20–22], and
induces their attraction, even if they are out-of-phase [23,24].
Nonlocality has a similar effect on dark solitons. In particular, it

has been shown both numerically [18] and experimentally [19]
that nonlocality induces attraction of otherwise repelling dark
solitons, leading to the formation of their bound states. The
physics of soliton attraction in nonlocal nonlinear media can
most easily be understood in the (linear) regime of strong
nonlocality [20]. In the context of nonlinear optics, a strongly
nonlocal response of the medium leads to the formation of a
broad (linear) index waveguide, which can trap two or more
solitons and enable the formation of bound states. In the
context of matter waves such nonlocal (dipolar) interaction
leads to the formation of a potential well, which again induces
attraction between solitons. While dark soliton attraction has
already been observed experimentally [19] the theoretical
analysis of this phenomenon in the regime of arbitrary degree
of nonlocality has been conducted only numerically [18]
or analytically in the special linear regime of strong
nonlocality [25].

In this work we will investigate analytically the interaction
of dark solitons in nonlocal media with an arbitrary degree
of nonlocality. We will consider a suitable nonlocal response
function and use the variational approach to derive analytical
formulas for the forces acting between two dark solitons. Our
results clearly show how nonlocality induces an attractive
force, which depends on the degree of nonlocality and
counteracts the otherwise inherent repulsive nature of dark
soliton interaction.

II. THE NONLOCAL MODEL AND THE
RESPONSE FUNCTION

In what follows we will be interested in the evolution
of 1 + 1-dimensional optical beams with a scalar amplitude
E(x,z) and intensity I (x,z) = |E(x,z)|2, that depends on the
transverse x coordinate and the propagation coordinate z.
Propagation of such beams in materials with a nonlocal defo-
cusing nonlinearity can be modeled by the following generic
dimensionless nonlocal nonlinear Schrödinger (NLS) equation

i
∂E

∂z
+ 1

2

∂2E

∂x2
− E

∫ +∞

−∞
R(x − ξ )I (ξ,z) dξ = 0, (1)

with the nonlocal response in the form of a convolution,
where R(x) is the nonlocal response function. In what follows
we will use the normalization

∫ ∞
−∞ R(x)dx = 1. Obviously

R(x) = δ(x) in a local Kerr medium. The actual form of the
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nonlocal response is determined by the details of the physical
process responsible for the nonlocality. For all diffusion-type
nonlinearities [26], orientational-type nonlinearities (like ne-
matic liquid crystal) [23], and for the general quadratic nonlin-
earity describing parametric interaction [27–30], the response
function is an exponential R(x) = (2σ )−1 exp(−|x|/σ ) origi-
nating from a Lorentzian in the Fourier domain, with σ > 0
defining the degree of nonlocality. Interestingly, for parametric
interaction, the response function can also be periodic, R(x) ∝
sin(|x|/σ ) in certain regimes of the parameter space [31].

To obtain analytically tractable results the strongly nonlocal
limit of σ → ∞ is often used, in which the equation becomes
linear [27,32–34] and the solitons are known as accessible
solitons [20]. The so-called weakly nonlocal limit (σ � 1)
also presents a simpler model, which can be solved exactly for
both dark and bright solitons [35].

Other types of localized response functions have been used
to obtain qualitative analytical results that capture the physics
of the effect of nonlocality, such as a Gaussian in connection
with variational calculations [36,37]. The generic properties
of the different types of response functions have been studied
by Wyller et al. in terms of modulational instability and it
was shown that, in general, all types of localized response
functions have the same generic properties, provided their
Fourier transform is positive-definite [38].

Here we combine two approaches. First we use the weakly
nonlocal model because it allows us to study any localized
response function by a single parameter. This allows us to
derive the weakly nonlocal form of the interaction potential for
any localized response function using the variational approach.
Then we introduce an arbitrary degree of nonlocality. We
do this by assuming a box-type localized response function
because this allows us to calculate the integrals that appear in
the variational approach. By comparing the results for arbitrary
degree of nonlocality and the box-type response to the generic
results obtained in the weakly nonlocal limit we prove that the
results are indeed generic.

III. INTERACTION BETWEEN DARK SOLITONS
IN WEAKLY NONLOCAL MEDIUM

We begin our analysis by considering first the specific
weakly nonlocal limit of Eq. (1), in which the width of the
response function is much smaller than the spatial scale of the
solitons. Then the intensity of the beam I (ξ,z) can be expanded
in a Taylor series with respect to ξ around ξ = x, and Eq. (1)
turns into

i
∂E

∂z
+ 1

2

∂2E

∂x2
− E

(
I + γ

∂2I

∂x2

)
= 0, (2)

where γ = 1
2

∫ +∞
−∞ R(x)x2dx clearly shows how the response

function needs to be localized. It is important to note that we
have here assumed a symmetric response function, which is
why it is the second derivative that appears as the perturbation
term proportional to γ . Asymmetric response functions, such
as the Raman response in optical fibers, could, of course, easily
be used too. However, asymmetric response functions do not
allow for defining a Lagrangian and thus to use the variational
approach. Thus we consider here only symmetric response
functions.

We will investigate the dark solitons using the variational
(or Lagrangian) approach [39]. It can be shown that the
Lagrangian density corresponding to Eq. (2) is of the
following form

L = i

2

(
u∗ ∂u

∂z
− u

∂u∗

∂z

) (
1 − 1

|u|2
)

− 1

2

∣∣∣∣∂u

∂x

∣∣∣∣
2

− 1

2
(|u|2 − 1)2 + 1

2
γ

(
∂|u|2
∂x

)2

, (3)

where we normalized the background intensity of the solitons
to unity and used the following transformation for the
amplitude of the field E(x,z) = u(x,z) exp(iz). To proceed
further we must postulate the form of the function u(x). It was
already shown earlier in studies of local dark solitons that the
proper ansatz is of the form

u = (B tanh z+ − iA)(B tanh z− + iA), (4)

where z± = D(x ± x0) and 2x0 denotes the separation
between solitons and A,B satisfies the normalization
condition A2 + B2 = 1. The choice of this particular ansatz
is dictated by the fact that it represents exact dark soliton
solutions of noninteracting local dark solitons. Substituting
Eq. (4) into Eq. (3) and considering the case of weakly
overlapping dark solitons, we obtain the averaged Lagrangian
L = ∫ ∞

−∞ L dx in the following form

L = 2L0 + dB

dz

4B2

AD tanh(2x0D)
+ 16B2 e−4x0D

×
[
2x0(D2 − B2 − 4γB2D2) + B2

3D
(4B2 − D2)

]
, (5)

where

L0 = 2
dx0

dz

[
−AB + tan−1

(
B

A

)]

− 2

3

[
B2D + B4

D

]
+ 8

15
γB4D, (6)

is the Lagrangian for the noninteracting weakly nonlocal dark
solitons [40].

From the corresponding Euler-Lagrangian equations one
finds the following relations for soliton parameters

dA

dz
= 8BD e−4x0D

[
2x0(D2 − B2 − 4γB2D2)

+ B2

3D
(4B2 − D2)

]
, (7)

1

3

[
1 − B2

D2

]
+ 16x0e

−4x0D

[
2x0(D2 − B2 − 4γB2)

+ B2

3D
(4B2 − D2)

]
− 4

15
γB2 = 0, (8)

dx0

dz
− A

3

[
D

B
+ 2B

D
− 8

5
γBD

]
+

[
x0(D2 − 2B2

− 8γB2D2) + B2

3D
(6B2 − D2)

]
8A

B
e−4x0D

+ dD

dz
[2D2 tanh(2x0D)]−1 = 0. (9)

013826-2



ANALYTICAL THEORY FOR THE DARK-SOLITON . . . PHYSICAL REVIEW A 82, 013826 (2010)

Assuming well-separated and weakly interacting
(x0D � 1) almost “black” solitons (A2 ≈ 0) we can
obtain from Eqs. (7) through (9) the following equation for
the soliton coordinate x0

d2x0

dz2
= −dV (x0)

dx0
, (10)

where we have introduced the “potential” V (x0) as

V (x0) = V1(x0) + V2(x0), (11)

with

V1(x0) = 2
(
1 − 16

15γB2
)

1 − 4
5γB2

exp

⎛
⎝− 4x0B√

1 − 4
5γB2

⎞
⎠B4,

V2(x0) = −2
(
1 − 16

15γB2
)

1 − 4
5γB2

exp

⎛
⎝− 4x0B√

1 − 4
5γB2

⎞
⎠

×B4

⎡
⎣8

5
γ

⎛
⎝ 4x0B√

1 − 4
5γB2

+ 1 + 2

3
B2

⎞
⎠

⎤
⎦ . (12)

Therefore, for set values of the soliton parameter B and
nonlocality γ , the dynamics of soliton interaction is repre-
sented as a mechanical analogy describing the motion of a
particle in an external potential. The potential consists of
two contributions. The first one, V1(x0), which exists even
for local nonlinearity, is positive and hence is responsible for
the naturally occurring dark soliton repulsion [16,41,42]. The
second contribution, V2(x0), provides a nonlocality-mediated
attractive force, which disappears for γ = 0.

The simultaneous presence of competing repulsive and
nonlocality-induced attractive forces introduces a local well in
the soliton interaction potential V (x0), as clearly demonstrated
in Fig. 1 for γ = 0.05, which enables the formation of soliton
bound states otherwise not possible in the local NLS equation.
This result is obtained in the specific weakly nonlocal limit,
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FIG. 1. (Color online) Dark soliton weakly nonlocal interaction
potential V (x0) given by Eq. (11). Red dashed line is the local case
(γ = 0), blue solid line is the weakly nonlocal regime (γ = 0.05).

which has the nice advantage of being generic, in the sense
that it is valid for any localized and symmetric response
function. In the following section we will extend the results
to the full regime of an arbitrary degree of nonlocality by
considering a specific response function. However, we connect
the general results to the generic result of the weakly nonlocal
limit to demonstrate the generic nature of also the general
result.

IV. GENERAL NONLOCAL CASE

Here we consider the interaction between the dark solitons
in nonlocal media, in which the nonlocal response has an
arbitrary degree of nonlocality. Then the Lagrangian density
corresponding to Eq. (1) is

L = i

2

(
u∗ ∂u

∂z
− u

∂u∗

∂z

)(
1 − 1

|u|2
)

− 1

2

∣∣∣∣∂u

∂x

∣∣∣∣
2

−1

2
(|u|2 − 1)

∫ +∞

−∞
R(x − ξ )[|u(ξ,z)|2 − 1]dξ. (13)

To make the problem analytically tractable we will consider
here the particular model of nonlocality described by the
rectangular nonlocal response function

R(x) =
{

1
2σ

− σ � x � σ,

0 otherwise.
(14)

Physically, this type of nonlocal response means that the
nonlinear response of the medium in a particular spatial
location is determined by the equal contributions from the
light intensity in the neighborhood of this location defined by
parameter σ . This is obviously a simplification, but as we will
see later, it leads to a physically correct description of the
soliton interaction.

Substituting Eq. (4) into Eq. (12) and integrating over the
transverse coordinate x, we obtain the averaged Lagrangian in
the form

L = dB

dz

4B2

AD tanh(2x0D)
+ 4

dx0

dz

[
−AB + tan−1

(
B

A

)]

− 4

3
B2D[4B2 + 12 − 24Dx0]e−4x0D − 4

3
B2D

+ 2B4

D

[
csch2(Dσ ) − coth(Dσ )

Dσ

]
+4B4

D

[
2 cosh(2Dσ )

− (4Dx0 − 1)
sinh(2Dσ )

Dσ
+ 8B2 + 4B2csch2(Dσ )

− 4B2 coth(Dσ )

Dσ

]
e−4x0D. (15)

From the corresponding Euler-Lagrangian equations one
can derive the evolution equation for the soliton coordinate,
which in the limit of weakly interacting (i.e., well separated),
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almost black solitons (A2 � 1) takes the following form

d2x0

dz2
=

[
D

3B
− B

D

(
csch2(Dσ ) − coth(Dσ )

Dσ

)]

×
{

2

3
BD2(24Dx0 − 4B2 − 12)

+ 2B3

[
(1 − 4Dx0)

sinh(2Dσ )

Dσ
+ 2 cosh(2Dσ )

+ 8B2 + 4B2csch2(Dσ )− 4B2 coth(Dσ )

Dσ

]}
e−4x0D

= −dV (x0)

dx0
, (16)

where the effective potential function V (x0) is defined as

V (x0) =
[
D2

3
− B2

(
csch2(Dσ ) − coth(Dσ )

Dσ

)]

×
{

(1 + 4Dx0)

(
1− B2

2D2

sinh(2Dσ )

Dσ

)
− 2

3
(B2 + 3)

+ B2

2D2

[
sinh(2Dσ )

Dσ
+ 2 cosh(2Dσ ) + 8B2

+ 4B2csch2(Dσ ) − 4B2 coth(Dσ )

Dσ

]}
e−4x0D,

(17)

and parameters B, D, and σ satisfy the following relation

1

3
− B2

D2

coth(Dσ )

Dσ
[1 − D2σ 2csch2(Dσ )] = 0. (18)

One can show that in the weakly nonlocal limit (i.e., when
σ � 1) the formula Eq. (16) leads to the potential of the
form of Eq. (11) with the nonlocality parameter γ given
by γ = 1

2

∫ +∞
−∞ R(x)x2 dx = σ 2/6. In Fig. 2 we show the

potential V (x0) for different values of the nonlocality σ . It is
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FIG. 2. (Color online) Dark soliton interaction potential V (x0),
given by Eq. (16), for a rectangular nonlocal response with an arbitrary
degree of nonlocality σ . Blue solid line is (σ = 1); red dashed line is
the strongly nonlocal regime (σ = 8.0).

FIG. 3. Numerically simulated interaction of initially parallel
dark solitons in nonlocal medium with rectangular nonlocal response
function, for different degree of nonlocality (a) σ = 0, (b) σ = 1,
(c) σ = 1.5, and (d) σ = 2.0. Notice the almost parallel propagation
of solitons for σ = 1, indicating the balance between repulsive and
attractive forces and consequently formation of the soliton bound
state.

evident that the generic results of the weakly nonlocal model
remain valid also for an arbitrary degree of nonlocality, that is,
nonlocality provides an attractive contribution to the potential,
which counteracts the natural repulsion of dark solitons thus
enabling the formation of their bound states. This fact provides
evidence that our general results for the specific rectangular
response function are, in fact, generic also for any symmetric
and localized response function.

We now confirm our theory by direct numerical simulations
of the nonlocal NLS Eq. (1) with the rectangular nonlocal
response function. As initial conditions we used Kerr soliton
profiles [see Eq. (4)] with A = 0, B = D = 1. The repre-
sentative results are depicted in Fig. 3. These contour plots
show the dynamics of initially well-separated solitons. The
separation is chosen to be sufficiently small so that both
solitons clearly repel when the nonlinearity is local [Fig. 3(a)].
It is clear that as the extent of nonlocal response increases
both solitons start experiencing the attractive force. In fact, in
the case depicted in Fig. 3(b) (σ = 1) the natural repulsion
of solitons is almost completely compensated for by the
nonlocality-mediated attraction leading to the formation of
the bound state of dark solitons. Interestingly, in this case the
solitons are separated by the distance of 2x0 = 3.8, which
corresponds to the location of the minimum of the effective
potential from Fig. 2 for σ = 1. For even stronger nonlocality
the attractive force causes mutual oscillations of the solitons’
trajectories. The radiation visible in Figs. 3(b) through 3(d) is
a result of the fact that the initial wave profiles are not exact
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FIG. 4. (Color online) Separation between solitons in a bound
state (r0) as a function of the degree of nonlocality σ . Solid line
represents the variational calculations; squares are the numerical
simulations of soliton propagation.

dark solitons in the nonlocal regime. Hence the solitons evolve
and transform as they propagate shading away radiation.

In Fig. 4 we plot with the solid line the separation between
solitons corresponding to their bound state as calculated from
the minimum of the effective potential Eq. (17). It is evident
that the separation is a nonmonotonic function of the degree
of nonlocality. This can be explained as follows. For the local
case (σ = 0) the separation must tend to infinity because of the
sole presence of the local repulsive potential. As σ increases
from zero the nonlocal attractive force comes to play and thus
the soliton separation will decrease until the balance between
repulsion and attraction is reached. The soliton separation

continues to decrease with increasing σ until it becomes
comparable with the degree of nonlocality. For larger σ the
resulting nonlinearity-induced waveguide becomes wider and
shallower. Since the soliton bound state must still represent
the mode of this waveguide it must increase its spatial extent
leading to bigger separation. This behavior has been confirmed
in numerical simulations. To this end, for a given degree of
nonlocality, we varied the initial distance between the solitons
and numerically propagated them over a distance long enough
to establish the formation of their bound state. The resulting
separation is depicted in Fig. 4 by filled squares. Clearly
it follows the trend found from variational analysis. On the
other hand, the numerical data are limited to a relatively low
degree of nonlocality because the strong radiation for larger σ

prevents the accurate determination of the bound states.

V. CONCLUSION

We studied analytically the interaction of dark spatial
solitons in a nonlocal medium. We used a variational technique
to derive the evolution equations for the separation between
the solitons. We showed that nonlocality provides an attractive
force between otherwise repelling solitons and enables the for-
mation of their bound states. The resulting soliton separation is
determined by the degree of nonlocality, but cannot be smaller
than the width of the nonlocal response. Our theoretical results
have been confirmed by direct numerical simulations of the
nonlinear nonlocal Schrödinger equation.
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