14,631 research outputs found

    Quantum Entanglement Capacity with Classical Feedback

    Full text link
    For any quantum discrete memoryless channel, we define a quantity called quantum entanglement capacity with classical feedback (EBE_B), and we show that this quantity lies between two other well-studied quantities. These two quantities - namely the quantum capacity assisted by two-way classical communication (Q2Q_2) and the quantum capacity with classical feedback (QBQ_B) - are widely conjectured to be different: there exists quantum discrete memoryless channel for which Q2>QBQ_2>Q_B. We then present a general scheme to convert any quantum error-correcting codes into adaptive protocols for this newly-defined quantity of the quantum depolarizing channel, and illustrate with Cat (repetition) code and Shor code. We contrast the present notion with entanglement purification protocols by showing that whilst the Leung-Shor protocol can be applied directly, recurrence methods need to be supplemented with other techniques but at the same time offer a way to improve the aforementioned Cat code. For the quantum depolarizing channel, we prove a formula that gives lower bounds on the quantum capacity with classical feedback from any EBE_B protocols. We then apply this formula to the EBE_B protocols that we discuss to obtain new lower bounds on the quantum capacity with classical feedback of the quantum depolarizing channel

    Properties of a magnetic superconductor with weak magnetization - application to ErNi2B2CErNi_2B_2C

    Full text link
    Using a Ginsburg-Landau free energy functional, we study the HTH-T phase diagram of a weak magnetic superconductor, where the magnetization from the magnetic component is marginal in supporting a spontaneous vortex phase in absence of external magnetic field. In particular, the competition between the spiral state and spontaneous vortex phase is analysed. Our theory is applied to understand the magnetic properties of ErNi2B2CErNi_2B_2C.Comment: 13 pages, 4 postscript figure

    Reversible simulation of bipartite product Hamiltonians

    Get PDF
    Consider two quantum systems A and B interacting according to a product Hamiltonian H = H_A x H_B. We show that any two such Hamiltonians can be used to simulate each other reversibly (i.e., without efficiency losses) with the help of local unitary operations and local ancillas. Accordingly, all non-local features of a product Hamiltonian -- including the rate at which it can be used to produce entanglement, transmit classical or quantum information, or simulate other Hamiltonians -- depend only upon a single parameter. We identify this parameter and use it to obtain an explicit expression for the entanglement capacity of all product Hamiltonians. Finally, we show how the notion of simulation leads to a natural formulation of measures of the strength of a nonlocal Hamiltonian.Comment: 10 page

    Quantum Data Hiding

    Full text link
    We expand on our work on Quantum Data Hiding -- hiding classical data among parties who are restricted to performing only local quantum operations and classical communication (LOCC). We review our scheme that hides one bit between two parties using Bell states, and we derive upper and lower bounds on the secrecy of the hiding scheme. We provide an explicit bound showing that multiple bits can be hidden bitwise with our scheme. We give a preparation of the hiding states as an efficient quantum computation that uses at most one ebit of entanglement. A candidate data hiding scheme that does not use entanglement is presented. We show how our scheme for quantum data hiding can be used in a conditionally secure quantum bit commitment scheme.Comment: 19 pages, IEEE style, 8 figures, submitted to IEEE Transactions on Information Theor

    Asymptotic entanglement capacity of the Ising and anisotropic Heisenberg interactions

    Get PDF
    We compute the asymptotic entanglement capacity of the Ising interaction ZZ, the anisotropic Heisenberg interaction XX + YY, and more generally, any two-qubit Hamiltonian with canonical form K = a XX + b YY. We also describe an entanglement assisted classical communication protocol using the Hamiltonian K with rate equal to the asymptotic entanglement capacity.Comment: 5 pages, 1 figure; minor corrections, conjecture adde

    Quantum phase transition induced by Dzyaloshinskii-Moriya in the kagome antiferromagnet

    Full text link
    We argue that the S=1/2 kagome antiferromagnet undergoes a quantum phase transition when the Dzyaloshinskii-Moriya coupling is increased. For D<DcD<D_c the system is in a moment-free phase and for D>DcD>D_c the system develops antiferromagnetic long-range order. The quantum critical point is found to be Dc0.1JD_c \simeq 0.1J using exact diagonalizations and finite-size scaling. This suggests that the kagome compound ZnCu3(OH)_3(OH)_6ClCl_3$ may be in a quantum critical region controlled by this fixed point.Comment: 5 pages, 4 figures; v2: add. data included, show that D=0.1J is at a quantum critical poin

    New geometries for high spatial resolution hall probes

    Full text link
    The Hall response function of symmetric and asymmetric planar Hall effect devices is investigated by scanning a magnetized tip above a sensor surface while simultaneously recording the topography and the Hall voltage. Hall sensor geometries are tailored using a Focused Ion Beam, in standard symmetric and new asymmetric geometries. With this technique we are able to reduce a single voltage probe to a narrow constriction 20 times smaller than the other device dimensions. We show that the response function is peaked above the constriction, in agreement with numerical simulations. The results suggest a new way to pattern Hall sensors for enhanced spatial resolution.Comment: 12 pages, 5 figures, submitted to Journal of Applied Physic

    Prescription for experimental determination of the dynamics of a quantum black box

    Full text link
    We give an explicit prescription for experimentally determining the evolution operators which completely describe the dynamics of a quantum mechanical black box -- an arbitrary open quantum system. We show necessary and sufficient conditions for this to be possible, and illustrate the general theory by considering specifically one and two quantum bit systems. These procedures may be useful in the comparative evaluation of experimental quantum measurement, communication, and computation systems.Comment: 6 pages, Revtex. Submitted to J. Mod. Op
    corecore