26,059 research outputs found

    Mechanisms of Auger-induced chemistry derived from wave packet dynamics

    Get PDF
    To understand how core ionization and subsequent Auger decay lead to bond breaking in large systems, we simulate the wave packet dynamics of electrons in the hydrogenated diamond nanoparticle C_(197)H_(112). We find that surface core ionizations cause emission of carbon fragments and protons through a direct Auger mechanism, whereas deeper core ionizations cause hydrides to be emitted from the surface via remote heating, consistent with results from photon-stimulated desorption experiments [Hoffman A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517–S1546]. This demonstrates that it is feasible to study the chemistry of highly excited large-scale systems using simulation and analysis tools comparable in simplicity to those used for classical molecular dynamics

    User manual of the CATSS system (version 1.0) communication analysis tool for space station

    Get PDF
    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction

    A Chandra ACIS view of the Thermal Composite Supernova Remnant 3C391

    Get PDF
    We present a 60 ks Chandra ACIS-S observation of the thermal composite supernova remnant 3C391. The southeast-northwest elongated morphology is similar to that previously found in radio and X-ray studies. This observation unveils a highly clumpy structure of the remnant. Detailed spatially resolved spectral analysis for the small-scale features reveals that the interior gas is generally of normal metal abundance and has approached or basically reached ionization equilibrium. The hydrogen column density increases from southeast to northwest. Three mechanisms, radiative rim, thermal conduction, and cloudlet evaporation, may all play roles in the X-ray appearance of 3C391 as a "thermal composite" remnant, but there are difficulties with each of them in explaining some physical properties. Comparatively, the cloudlet evaporation model is favored by the main characteristics such as the highly clumpy structure and the uniform temperature and density distribution over most of the remnant. The directly measured postshock temperature also implies a young age, about 4 kyr, for the remnant. The postshock gas pressure derived from the NE and SW rims, which harbor maser spots, is consistent with the estimate for the maser regions. An unresolved X-ray source is observed on the northwest border and its spectrum is best fitted by a power-law.Comment: aastex, 27 pages (including 4 figures), to appear in the ApJ 1 Dec. 2004, v616 issu

    Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    Get PDF
    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed

    Magnetic structure of the Eu2+ moments in superconducting EuFe2(As1-xPx)2 with x = 0.19

    Get PDF
    The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.19 has been determined using neutron scattering. We conclude that the Eu2+ moments are aligned along the c direction below T_C = 19.0(1) K with an ordered moment of 6.6(2) mu_B in the superconducting state. An impurity phase similar to the underdoped phase exists within the bulk sample which orders antiferromagnetically below T_N = 17.0(2) K. We found no indication of iron magnetic order, nor any incommensurate magnetic order of the Eu2+ moments in the sample.Comment: Accepted for publication in Phys. Rev. B (regular article

    Optical Ultrasound Generation and Detection for Intravascular Imaging: A Review.

    Get PDF
    Combined ultrasound and photoacoustic imaging has attracted significant interests for intravascular imaging such as atheromatous plaque detection, with ultrasound imaging providing spatial location and morphology and photoacoustic imaging highlighting molecular composition of the plaque. Conventional ultrasound imaging systems utilize piezoelectric ultrasound transducers, which suffer from limited frequency bandwidths and reduced sensitivity with miniature transducer elements. Recent advances on optical methods for both ultrasound generation and detection have shown great promise, as they provide efficient and ultrabroadband ultrasound generation and sensitive and ultrabroadband ultrasound detection. As such, all-optical ultrasound imaging has a great potential to become a next generation ultrasound imaging method. In this paper, we review recent developments on optical ultrasound transmitters, detectors, and all-optical ultrasound imaging systems, with a particular focus on fiber-based probes for intravascular imaging. We further discuss our thoughts on future directions on developing combined all-optical photoacoustic and ultrasound imaging systems for intravascular imaging
    • …
    corecore